Metamath Proof Explorer


Theorem weiunwe

Description: A well-ordering on an indexed union can be constructed from a well-ordering on its index set and a collection of well-orderings on its members. (Contributed by Matthew House, 23-Aug-2025)

Ref Expression
Hypotheses weiunwe.1 F = w x A B ι u x A | w B | v x A | w B ¬ v R u
weiunwe.2 T = y z | y x A B z x A B F y R F z F y = F z y F y / x S z
Assertion weiunwe R We A R Se A x A S We B T We x A B

Proof

Step Hyp Ref Expression
1 weiunwe.1 F = w x A B ι u x A | w B | v x A | w B ¬ v R u
2 weiunwe.2 T = y z | y x A B z x A B F y R F z F y = F z y F y / x S z
3 wefr S We B S Fr B
4 3 ralimi x A S We B x A S Fr B
5 1 2 weiunfr R We A R Se A x A S Fr B T Fr x A B
6 4 5 syl3an3 R We A R Se A x A S We B T Fr x A B
7 weso S We B S Or B
8 7 ralimi x A S We B x A S Or B
9 1 2 weiunso R We A R Se A x A S Or B T Or x A B
10 8 9 syl3an3 R We A R Se A x A S We B T Or x A B
11 df-we T We x A B T Fr x A B T Or x A B
12 6 10 11 sylanbrc R We A R Se A x A S We B T We x A B