Step |
Hyp |
Ref |
Expression |
1 |
|
weiun.1 |
|
2 |
|
weiun.2 |
|
3 |
|
sopo |
|
4 |
3
|
ralimi |
|
5 |
1 2
|
weiunpo |
|
6 |
4 5
|
syl3an3 |
|
7 |
|
simplrl |
|
8 |
|
simplrr |
|
9 |
|
animorrl |
|
10 |
1 2
|
weiunlem1 |
|
11 |
7 8 9 10
|
syl21anbrc |
|
12 |
11
|
3mix1d |
|
13 |
|
csbeq1 |
|
14 |
|
csbeq1 |
|
15 |
13 14
|
soeq12d |
|
16 |
|
simpll3 |
|
17 |
|
nfv |
|
18 |
|
nfcsb1v |
|
19 |
|
nfcsb1v |
|
20 |
18 19
|
nfso |
|
21 |
|
csbeq1a |
|
22 |
|
csbeq1a |
|
23 |
21 22
|
soeq12d |
|
24 |
17 20 23
|
cbvralw |
|
25 |
16 24
|
sylib |
|
26 |
|
simpl1 |
|
27 |
|
simpl2 |
|
28 |
1 2 26 27
|
weiunlem2 |
|
29 |
28
|
simp1d |
|
30 |
|
simprl |
|
31 |
29 30
|
ffvelcdmd |
|
32 |
31
|
adantr |
|
33 |
15 25 32
|
rspcdva |
|
34 |
|
id |
|
35 |
|
fveq2 |
|
36 |
35
|
csbeq1d |
|
37 |
34 36
|
eleq12d |
|
38 |
28
|
simp2d |
|
39 |
38
|
adantr |
|
40 |
|
simplrl |
|
41 |
37 39 40
|
rspcdva |
|
42 |
|
id |
|
43 |
|
fveq2 |
|
44 |
43
|
csbeq1d |
|
45 |
42 44
|
eleq12d |
|
46 |
|
simplrr |
|
47 |
45 39 46
|
rspcdva |
|
48 |
|
simpr |
|
49 |
48
|
csbeq1d |
|
50 |
47 49
|
eleqtrrd |
|
51 |
|
solin |
|
52 |
33 41 50 51
|
syl12anc |
|
53 |
|
simpllr |
|
54 |
48
|
anim1i |
|
55 |
54
|
olcd |
|
56 |
53 55 10
|
sylanbrc |
|
57 |
56
|
ex |
|
58 |
|
idd |
|
59 |
46
|
adantr |
|
60 |
40
|
adantr |
|
61 |
|
simplr |
|
62 |
61
|
eqcomd |
|
63 |
61
|
csbeq1d |
|
64 |
|
simpr |
|
65 |
63 64
|
breqdi |
|
66 |
62 65
|
jca |
|
67 |
66
|
olcd |
|
68 |
1 2
|
weiunlem1 |
|
69 |
59 60 67 68
|
syl21anbrc |
|
70 |
69
|
ex |
|
71 |
57 58 70
|
3orim123d |
|
72 |
52 71
|
mpd |
|
73 |
|
simplrr |
|
74 |
|
simplrl |
|
75 |
|
animorrl |
|
76 |
73 74 75 68
|
syl21anbrc |
|
77 |
76
|
3mix3d |
|
78 |
|
weso |
|
79 |
26 78
|
syl |
|
80 |
|
simprr |
|
81 |
29 80
|
ffvelcdmd |
|
82 |
|
solin |
|
83 |
79 31 81 82
|
syl12anc |
|
84 |
12 72 77 83
|
mpjao3dan |
|
85 |
6 84
|
issod |
|