| Step |
Hyp |
Ref |
Expression |
| 1 |
|
weiun.1 |
|
| 2 |
|
weiun.2 |
|
| 3 |
|
sopo |
|
| 4 |
3
|
ralimi |
|
| 5 |
1 2
|
weiunpo |
|
| 6 |
4 5
|
syl3an3 |
|
| 7 |
|
simplrl |
|
| 8 |
|
simplrr |
|
| 9 |
|
animorrl |
|
| 10 |
1 2
|
weiunlem1 |
|
| 11 |
7 8 9 10
|
syl21anbrc |
|
| 12 |
11
|
3mix1d |
|
| 13 |
|
csbeq1 |
|
| 14 |
|
csbeq1 |
|
| 15 |
13 14
|
soeq12d |
|
| 16 |
|
simpll3 |
|
| 17 |
|
nfv |
|
| 18 |
|
nfcsb1v |
|
| 19 |
|
nfcsb1v |
|
| 20 |
18 19
|
nfso |
|
| 21 |
|
csbeq1a |
|
| 22 |
|
csbeq1a |
|
| 23 |
21 22
|
soeq12d |
|
| 24 |
17 20 23
|
cbvralw |
|
| 25 |
16 24
|
sylib |
|
| 26 |
|
simpl1 |
|
| 27 |
|
simpl2 |
|
| 28 |
1 2 26 27
|
weiunlem2 |
|
| 29 |
28
|
simp1d |
|
| 30 |
|
simprl |
|
| 31 |
29 30
|
ffvelcdmd |
|
| 32 |
31
|
adantr |
|
| 33 |
15 25 32
|
rspcdva |
|
| 34 |
|
id |
|
| 35 |
|
fveq2 |
|
| 36 |
35
|
csbeq1d |
|
| 37 |
34 36
|
eleq12d |
|
| 38 |
28
|
simp2d |
|
| 39 |
38
|
adantr |
|
| 40 |
|
simplrl |
|
| 41 |
37 39 40
|
rspcdva |
|
| 42 |
|
id |
|
| 43 |
|
fveq2 |
|
| 44 |
43
|
csbeq1d |
|
| 45 |
42 44
|
eleq12d |
|
| 46 |
|
simplrr |
|
| 47 |
45 39 46
|
rspcdva |
|
| 48 |
|
simpr |
|
| 49 |
48
|
csbeq1d |
|
| 50 |
47 49
|
eleqtrrd |
|
| 51 |
|
solin |
|
| 52 |
33 41 50 51
|
syl12anc |
|
| 53 |
|
simpllr |
|
| 54 |
48
|
anim1i |
|
| 55 |
54
|
olcd |
|
| 56 |
53 55 10
|
sylanbrc |
|
| 57 |
56
|
ex |
|
| 58 |
|
idd |
|
| 59 |
46
|
adantr |
|
| 60 |
40
|
adantr |
|
| 61 |
|
simplr |
|
| 62 |
61
|
eqcomd |
|
| 63 |
61
|
csbeq1d |
|
| 64 |
|
simpr |
|
| 65 |
63 64
|
breqdi |
|
| 66 |
62 65
|
jca |
|
| 67 |
66
|
olcd |
|
| 68 |
1 2
|
weiunlem1 |
|
| 69 |
59 60 67 68
|
syl21anbrc |
|
| 70 |
69
|
ex |
|
| 71 |
57 58 70
|
3orim123d |
|
| 72 |
52 71
|
mpd |
|
| 73 |
|
simplrr |
|
| 74 |
|
simplrl |
|
| 75 |
|
animorrl |
|
| 76 |
73 74 75 68
|
syl21anbrc |
|
| 77 |
76
|
3mix3d |
|
| 78 |
|
weso |
|
| 79 |
26 78
|
syl |
|
| 80 |
|
simprr |
|
| 81 |
29 80
|
ffvelcdmd |
|
| 82 |
|
solin |
|
| 83 |
79 31 81 82
|
syl12anc |
|
| 84 |
12 72 77 83
|
mpjao3dan |
|
| 85 |
6 84
|
issod |
|