Metamath Proof Explorer


Theorem weiunso

Description: A strict ordering on an indexed union can be constructed from a well-ordering on its index set and a collection of strict orderings on its members. (Contributed by Matthew House, 23-Aug-2025)

Ref Expression
Hypotheses weiunso.1 F = w x A B ι u x A | w B | v x A | w B ¬ v R u
weiunso.2 T = y z | y x A B z x A B F y R F z F y = F z y F y / x S z
Assertion weiunso R We A R Se A x A S Or B T Or x A B

Proof

Step Hyp Ref Expression
1 weiunso.1 F = w x A B ι u x A | w B | v x A | w B ¬ v R u
2 weiunso.2 T = y z | y x A B z x A B F y R F z F y = F z y F y / x S z
3 sopo S Or B S Po B
4 3 ralimi x A S Or B x A S Po B
5 1 2 weiunpo R We A R Se A x A S Po B T Po x A B
6 4 5 syl3an3 R We A R Se A x A S Or B T Po x A B
7 simplrl R We A R Se A x A S Or B q x A B r x A B F q R F r q x A B
8 simplrr R We A R Se A x A S Or B q x A B r x A B F q R F r r x A B
9 animorrl R We A R Se A x A S Or B q x A B r x A B F q R F r F q R F r F q = F r q F q / x S r
10 simpl y = q z = r y = q
11 10 fveq2d y = q z = r F y = F q
12 simpr y = q z = r z = r
13 12 fveq2d y = q z = r F z = F r
14 11 13 breq12d y = q z = r F y R F z F q R F r
15 11 13 eqeq12d y = q z = r F y = F z F q = F r
16 11 csbeq1d y = q z = r F y / x S = F q / x S
17 10 16 12 breq123d y = q z = r y F y / x S z q F q / x S r
18 15 17 anbi12d y = q z = r F y = F z y F y / x S z F q = F r q F q / x S r
19 14 18 orbi12d y = q z = r F y R F z F y = F z y F y / x S z F q R F r F q = F r q F q / x S r
20 19 2 brab2a q T r q x A B r x A B F q R F r F q = F r q F q / x S r
21 7 8 9 20 syl21anbrc R We A R Se A x A S Or B q x A B r x A B F q R F r q T r
22 21 3mix1d R We A R Se A x A S Or B q x A B r x A B F q R F r q T r q = r r T q
23 csbeq1 s = F q s / x S = F q / x S
24 soeq1 s / x S = F q / x S s / x S Or s / x B F q / x S Or s / x B
25 23 24 syl s = F q s / x S Or s / x B F q / x S Or s / x B
26 csbeq1 s = F q s / x B = F q / x B
27 soeq2 s / x B = F q / x B F q / x S Or s / x B F q / x S Or F q / x B
28 26 27 syl s = F q F q / x S Or s / x B F q / x S Or F q / x B
29 25 28 bitrd s = F q s / x S Or s / x B F q / x S Or F q / x B
30 simpll3 R We A R Se A x A S Or B q x A B r x A B F q = F r x A S Or B
31 nfv s S Or B
32 nfcsb1v _ x s / x S
33 nfcsb1v _ x s / x B
34 32 33 nfso x s / x S Or s / x B
35 csbeq1a x = s S = s / x S
36 soeq1 S = s / x S S Or B s / x S Or B
37 35 36 syl x = s S Or B s / x S Or B
38 csbeq1a x = s B = s / x B
39 soeq2 B = s / x B s / x S Or B s / x S Or s / x B
40 38 39 syl x = s s / x S Or B s / x S Or s / x B
41 37 40 bitrd x = s S Or B s / x S Or s / x B
42 31 34 41 cbvralw x A S Or B s A s / x S Or s / x B
43 30 42 sylib R We A R Se A x A S Or B q x A B r x A B F q = F r s A s / x S Or s / x B
44 simpl1 R We A R Se A x A S Or B q x A B r x A B R We A
45 simpl2 R We A R Se A x A S Or B q x A B r x A B R Se A
46 1 weiunlem2 R We A R Se A F : x A B A t x A B t F t / x B t x A B s A t s / x B ¬ s R F t
47 44 45 46 syl2anc R We A R Se A x A S Or B q x A B r x A B F : x A B A t x A B t F t / x B t x A B s A t s / x B ¬ s R F t
48 47 simp1d R We A R Se A x A S Or B q x A B r x A B F : x A B A
49 simprl R We A R Se A x A S Or B q x A B r x A B q x A B
50 48 49 ffvelcdmd R We A R Se A x A S Or B q x A B r x A B F q A
51 50 adantr R We A R Se A x A S Or B q x A B r x A B F q = F r F q A
52 29 43 51 rspcdva R We A R Se A x A S Or B q x A B r x A B F q = F r F q / x S Or F q / x B
53 id t = q t = q
54 fveq2 t = q F t = F q
55 54 csbeq1d t = q F t / x B = F q / x B
56 53 55 eleq12d t = q t F t / x B q F q / x B
57 47 simp2d R We A R Se A x A S Or B q x A B r x A B t x A B t F t / x B
58 57 adantr R We A R Se A x A S Or B q x A B r x A B F q = F r t x A B t F t / x B
59 simplrl R We A R Se A x A S Or B q x A B r x A B F q = F r q x A B
60 56 58 59 rspcdva R We A R Se A x A S Or B q x A B r x A B F q = F r q F q / x B
61 id t = r t = r
62 fveq2 t = r F t = F r
63 62 csbeq1d t = r F t / x B = F r / x B
64 61 63 eleq12d t = r t F t / x B r F r / x B
65 simplrr R We A R Se A x A S Or B q x A B r x A B F q = F r r x A B
66 64 58 65 rspcdva R We A R Se A x A S Or B q x A B r x A B F q = F r r F r / x B
67 simpr R We A R Se A x A S Or B q x A B r x A B F q = F r F q = F r
68 67 csbeq1d R We A R Se A x A S Or B q x A B r x A B F q = F r F q / x B = F r / x B
69 66 68 eleqtrrd R We A R Se A x A S Or B q x A B r x A B F q = F r r F q / x B
70 solin F q / x S Or F q / x B q F q / x B r F q / x B q F q / x S r q = r r F q / x S q
71 52 60 69 70 syl12anc R We A R Se A x A S Or B q x A B r x A B F q = F r q F q / x S r q = r r F q / x S q
72 simpllr R We A R Se A x A S Or B q x A B r x A B F q = F r q F q / x S r q x A B r x A B
73 67 anim1i R We A R Se A x A S Or B q x A B r x A B F q = F r q F q / x S r F q = F r q F q / x S r
74 73 olcd R We A R Se A x A S Or B q x A B r x A B F q = F r q F q / x S r F q R F r F q = F r q F q / x S r
75 72 74 20 sylanbrc R We A R Se A x A S Or B q x A B r x A B F q = F r q F q / x S r q T r
76 75 ex R We A R Se A x A S Or B q x A B r x A B F q = F r q F q / x S r q T r
77 idd R We A R Se A x A S Or B q x A B r x A B F q = F r q = r q = r
78 65 adantr R We A R Se A x A S Or B q x A B r x A B F q = F r r F q / x S q r x A B
79 59 adantr R We A R Se A x A S Or B q x A B r x A B F q = F r r F q / x S q q x A B
80 simplr R We A R Se A x A S Or B q x A B r x A B F q = F r r F q / x S q F q = F r
81 80 eqcomd R We A R Se A x A S Or B q x A B r x A B F q = F r r F q / x S q F r = F q
82 80 csbeq1d R We A R Se A x A S Or B q x A B r x A B F q = F r r F q / x S q F q / x S = F r / x S
83 simpr R We A R Se A x A S Or B q x A B r x A B F q = F r r F q / x S q r F q / x S q
84 82 83 breqdi R We A R Se A x A S Or B q x A B r x A B F q = F r r F q / x S q r F r / x S q
85 81 84 jca R We A R Se A x A S Or B q x A B r x A B F q = F r r F q / x S q F r = F q r F r / x S q
86 85 olcd R We A R Se A x A S Or B q x A B r x A B F q = F r r F q / x S q F r R F q F r = F q r F r / x S q
87 simpl y = r z = q y = r
88 87 fveq2d y = r z = q F y = F r
89 simpr y = r z = q z = q
90 89 fveq2d y = r z = q F z = F q
91 88 90 breq12d y = r z = q F y R F z F r R F q
92 88 90 eqeq12d y = r z = q F y = F z F r = F q
93 88 csbeq1d y = r z = q F y / x S = F r / x S
94 87 93 89 breq123d y = r z = q y F y / x S z r F r / x S q
95 92 94 anbi12d y = r z = q F y = F z y F y / x S z F r = F q r F r / x S q
96 91 95 orbi12d y = r z = q F y R F z F y = F z y F y / x S z F r R F q F r = F q r F r / x S q
97 96 2 brab2a r T q r x A B q x A B F r R F q F r = F q r F r / x S q
98 78 79 86 97 syl21anbrc R We A R Se A x A S Or B q x A B r x A B F q = F r r F q / x S q r T q
99 98 ex R We A R Se A x A S Or B q x A B r x A B F q = F r r F q / x S q r T q
100 76 77 99 3orim123d R We A R Se A x A S Or B q x A B r x A B F q = F r q F q / x S r q = r r F q / x S q q T r q = r r T q
101 71 100 mpd R We A R Se A x A S Or B q x A B r x A B F q = F r q T r q = r r T q
102 simplrr R We A R Se A x A S Or B q x A B r x A B F r R F q r x A B
103 simplrl R We A R Se A x A S Or B q x A B r x A B F r R F q q x A B
104 animorrl R We A R Se A x A S Or B q x A B r x A B F r R F q F r R F q F r = F q r F r / x S q
105 102 103 104 97 syl21anbrc R We A R Se A x A S Or B q x A B r x A B F r R F q r T q
106 105 3mix3d R We A R Se A x A S Or B q x A B r x A B F r R F q q T r q = r r T q
107 weso R We A R Or A
108 44 107 syl R We A R Se A x A S Or B q x A B r x A B R Or A
109 simprr R We A R Se A x A S Or B q x A B r x A B r x A B
110 48 109 ffvelcdmd R We A R Se A x A S Or B q x A B r x A B F r A
111 solin R Or A F q A F r A F q R F r F q = F r F r R F q
112 108 50 110 111 syl12anc R We A R Se A x A S Or B q x A B r x A B F q R F r F q = F r F r R F q
113 22 101 106 112 mpjao3dan R We A R Se A x A S Or B q x A B r x A B q T r q = r r T q
114 6 113 issod R We A R Se A x A S Or B T Or x A B