Step |
Hyp |
Ref |
Expression |
1 |
|
weiunfr.1 |
|
2 |
|
weiunfr.2 |
|
3 |
|
breq2 |
|
4 |
3
|
notbid |
|
5 |
4
|
ralbidv |
|
6 |
5
|
cbvriotavw |
|
7 |
|
nfcv |
|
8 |
|
nfcv |
|
9 |
|
nfv |
|
10 |
|
nfcsb1v |
|
11 |
10
|
nfcri |
|
12 |
|
csbeq1a |
|
13 |
12
|
eleq2d |
|
14 |
7 8 9 11 13
|
cbvrabw |
|
15 |
|
eleq1w |
|
16 |
15
|
rabbidv |
|
17 |
14 16
|
eqtrid |
|
18 |
|
breq1 |
|
19 |
18
|
notbid |
|
20 |
19
|
adantl |
|
21 |
17
|
adantr |
|
22 |
20 21
|
cbvraldva2 |
|
23 |
17 22
|
riotaeqbidv |
|
24 |
6 23
|
eqtrid |
|
25 |
24
|
cbvmptv |
|
26 |
|
nfcv |
|
27 |
26 10 12
|
cbviun |
|
28 |
27
|
mpteq1i |
|
29 |
1 25 28
|
3eqtri |
|
30 |
|
simpl |
|
31 |
27
|
a1i |
|
32 |
30 31
|
eleq12d |
|
33 |
|
simpr |
|
34 |
33 31
|
eleq12d |
|
35 |
32 34
|
anbi12d |
|
36 |
30
|
fveq2d |
|
37 |
33
|
fveq2d |
|
38 |
36 37
|
breq12d |
|
39 |
36 37
|
eqeq12d |
|
40 |
36
|
csbeq1d |
|
41 |
|
csbcow |
|
42 |
40 41
|
eqtr4di |
|
43 |
30 42 33
|
breq123d |
|
44 |
39 43
|
anbi12d |
|
45 |
38 44
|
orbi12d |
|
46 |
35 45
|
anbi12d |
|
47 |
46
|
cbvopabv |
|
48 |
2 47
|
eqtri |
|
49 |
|
breq1 |
|
50 |
49
|
notbid |
|
51 |
50
|
cbvralvw |
|
52 |
51
|
a1i |
|
53 |
52
|
riotabiia |
|
54 |
29 48 53
|
weiunfrlem2 |
|
55 |
|
nfv |
|
56 |
|
nfcsb1v |
|
57 |
56 10
|
nffr |
|
58 |
|
csbeq1a |
|
59 |
|
freq1 |
|
60 |
58 59
|
syl |
|
61 |
|
freq2 |
|
62 |
12 61
|
syl |
|
63 |
60 62
|
bitrd |
|
64 |
55 57 63
|
cbvralw |
|
65 |
64
|
3anbi3i |
|
66 |
|
freq2 |
|
67 |
27 66
|
ax-mp |
|
68 |
54 65 67
|
3imtr4i |
|