Metamath Proof Explorer


Theorem weiunfr

Description: A well-founded relation on an indexed union can be constructed from a well-ordering on its index set and a collection of well-founded relations on its members. (Contributed by Matthew House, 23-Aug-2025)

Ref Expression
Hypotheses weiunfr.1 F = w x A B ι u x A | w B | v x A | w B ¬ v R u
weiunfr.2 T = y z | y x A B z x A B F y R F z F y = F z y F y / x S z
Assertion weiunfr R We A R Se A x A S Fr B T Fr x A B

Proof

Step Hyp Ref Expression
1 weiunfr.1 F = w x A B ι u x A | w B | v x A | w B ¬ v R u
2 weiunfr.2 T = y z | y x A B z x A B F y R F z F y = F z y F y / x S z
3 breq2 u = m v R u v R m
4 3 notbid u = m ¬ v R u ¬ v R m
5 4 ralbidv u = m v x A | w B ¬ v R u v x A | w B ¬ v R m
6 5 cbvriotavw ι u x A | w B | v x A | w B ¬ v R u = ι m x A | w B | v x A | w B ¬ v R m
7 nfcv _ x A
8 nfcv _ l A
9 nfv l w B
10 nfcsb1v _ x l / x B
11 10 nfcri x w l / x B
12 csbeq1a x = l B = l / x B
13 12 eleq2d x = l w B w l / x B
14 7 8 9 11 13 cbvrabw x A | w B = l A | w l / x B
15 eleq1w w = k w l / x B k l / x B
16 15 rabbidv w = k l A | w l / x B = l A | k l / x B
17 14 16 eqtrid w = k x A | w B = l A | k l / x B
18 breq1 v = n v R m n R m
19 18 notbid v = n ¬ v R m ¬ n R m
20 19 adantl w = k v = n ¬ v R m ¬ n R m
21 17 adantr w = k v = n x A | w B = l A | k l / x B
22 20 21 cbvraldva2 w = k v x A | w B ¬ v R m n l A | k l / x B ¬ n R m
23 17 22 riotaeqbidv w = k ι m x A | w B | v x A | w B ¬ v R m = ι m l A | k l / x B | n l A | k l / x B ¬ n R m
24 6 23 eqtrid w = k ι u x A | w B | v x A | w B ¬ v R u = ι m l A | k l / x B | n l A | k l / x B ¬ n R m
25 24 cbvmptv w x A B ι u x A | w B | v x A | w B ¬ v R u = k x A B ι m l A | k l / x B | n l A | k l / x B ¬ n R m
26 nfcv _ l B
27 26 10 12 cbviun x A B = l A l / x B
28 27 mpteq1i k x A B ι m l A | k l / x B | n l A | k l / x B ¬ n R m = k l A l / x B ι m l A | k l / x B | n l A | k l / x B ¬ n R m
29 1 25 28 3eqtri F = k l A l / x B ι m l A | k l / x B | n l A | k l / x B ¬ n R m
30 simpl y = o z = p y = o
31 27 a1i y = o z = p x A B = l A l / x B
32 30 31 eleq12d y = o z = p y x A B o l A l / x B
33 simpr y = o z = p z = p
34 33 31 eleq12d y = o z = p z x A B p l A l / x B
35 32 34 anbi12d y = o z = p y x A B z x A B o l A l / x B p l A l / x B
36 30 fveq2d y = o z = p F y = F o
37 33 fveq2d y = o z = p F z = F p
38 36 37 breq12d y = o z = p F y R F z F o R F p
39 36 37 eqeq12d y = o z = p F y = F z F o = F p
40 36 csbeq1d y = o z = p F y / x S = F o / x S
41 csbcow F o / l l / x S = F o / x S
42 40 41 eqtr4di y = o z = p F y / x S = F o / l l / x S
43 30 42 33 breq123d y = o z = p y F y / x S z o F o / l l / x S p
44 39 43 anbi12d y = o z = p F y = F z y F y / x S z F o = F p o F o / l l / x S p
45 38 44 orbi12d y = o z = p F y R F z F y = F z y F y / x S z F o R F p F o = F p o F o / l l / x S p
46 35 45 anbi12d y = o z = p y x A B z x A B F y R F z F y = F z y F y / x S z o l A l / x B p l A l / x B F o R F p F o = F p o F o / l l / x S p
47 46 cbvopabv y z | y x A B z x A B F y R F z F y = F z y F y / x S z = o p | o l A l / x B p l A l / x B F o R F p F o = F p o F o / l l / x S p
48 2 47 eqtri T = o p | o l A l / x B p l A l / x B F o R F p F o = F p o F o / l l / x S p
49 breq1 q = t q R s t R s
50 49 notbid q = t ¬ q R s ¬ t R s
51 50 cbvralvw q F r ¬ q R s t F r ¬ t R s
52 51 a1i s F r q F r ¬ q R s t F r ¬ t R s
53 52 riotabiia ι s F r | q F r ¬ q R s = ι s F r | t F r ¬ t R s
54 29 48 53 weiunfrlem2 R We A R Se A l A l / x S Fr l / x B T Fr l A l / x B
55 nfv l S Fr B
56 nfcsb1v _ x l / x S
57 56 10 nffr x l / x S Fr l / x B
58 csbeq1a x = l S = l / x S
59 freq1 S = l / x S S Fr B l / x S Fr B
60 58 59 syl x = l S Fr B l / x S Fr B
61 freq2 B = l / x B l / x S Fr B l / x S Fr l / x B
62 12 61 syl x = l l / x S Fr B l / x S Fr l / x B
63 60 62 bitrd x = l S Fr B l / x S Fr l / x B
64 55 57 63 cbvralw x A S Fr B l A l / x S Fr l / x B
65 64 3anbi3i R We A R Se A x A S Fr B R We A R Se A l A l / x S Fr l / x B
66 freq2 x A B = l A l / x B T Fr x A B T Fr l A l / x B
67 27 66 ax-mp T Fr x A B T Fr l A l / x B
68 54 65 67 3imtr4i R We A R Se A x A S Fr B T Fr x A B