| Step |
Hyp |
Ref |
Expression |
| 1 |
|
weiun.1 |
|
| 2 |
|
weiun.2 |
|
| 3 |
|
simpl2 |
|
| 4 |
|
simpl1 |
|
| 5 |
1 2 4 3
|
weiunlem2 |
|
| 6 |
5
|
simp1d |
|
| 7 |
|
simpr |
|
| 8 |
6 7
|
ffvelcdmd |
|
| 9 |
|
seex |
|
| 10 |
3 8 9
|
syl2anc |
|
| 11 |
|
snex |
|
| 12 |
|
unexg |
|
| 13 |
10 11 12
|
sylancl |
|
| 14 |
|
ssrab2 |
|
| 15 |
14
|
a1i |
|
| 16 |
8
|
snssd |
|
| 17 |
15 16
|
unssd |
|
| 18 |
|
simpl3 |
|
| 19 |
|
elex |
|
| 20 |
19
|
ralimi |
|
| 21 |
18 20
|
syl |
|
| 22 |
|
nfv |
|
| 23 |
|
nfcsb1v |
|
| 24 |
23
|
nfel1 |
|
| 25 |
|
csbeq1a |
|
| 26 |
25
|
eleq1d |
|
| 27 |
22 24 26
|
cbvralw |
|
| 28 |
21 27
|
sylib |
|
| 29 |
|
ssralv |
|
| 30 |
17 28 29
|
sylc |
|
| 31 |
|
iunexg |
|
| 32 |
13 30 31
|
syl2anc |
|
| 33 |
6
|
3ad2ant1 |
|
| 34 |
|
simp2 |
|
| 35 |
33 34
|
ffvelcdmd |
|
| 36 |
|
breq1 |
|
| 37 |
36
|
elrab |
|
| 38 |
|
elun1 |
|
| 39 |
37 38
|
sylbir |
|
| 40 |
35 39
|
sylan |
|
| 41 |
|
fvex |
|
| 42 |
41
|
elsn |
|
| 43 |
|
elun2 |
|
| 44 |
42 43
|
sylbir |
|
| 45 |
44
|
ad2antrl |
|
| 46 |
1 2
|
weiunlem1 |
|
| 47 |
46
|
simprbi |
|
| 48 |
47
|
3ad2ant3 |
|
| 49 |
40 45 48
|
mpjaodan |
|
| 50 |
|
id |
|
| 51 |
|
fveq2 |
|
| 52 |
51
|
csbeq1d |
|
| 53 |
50 52
|
eleq12d |
|
| 54 |
5
|
simp2d |
|
| 55 |
54
|
3ad2ant1 |
|
| 56 |
53 55 34
|
rspcdva |
|
| 57 |
|
csbeq1 |
|
| 58 |
57
|
eliuni |
|
| 59 |
49 56 58
|
syl2anc |
|
| 60 |
59
|
rabssdv |
|
| 61 |
32 60
|
ssexd |
|
| 62 |
61
|
ralrimiva |
|
| 63 |
|
df-se |
|
| 64 |
62 63
|
sylibr |
|