Metamath Proof Explorer


Theorem weiunse

Description: The relation constructed in weiunpo , weiunso , weiunfr , and weiunwe is set-like if all members of the indexed union are sets. (Contributed by Matthew House, 23-Aug-2025)

Ref Expression
Hypotheses weiun.1 F = w x A B ι u x A | w B | v x A | w B ¬ v R u
weiun.2 T = y z | y x A B z x A B F y R F z F y = F z y F y / x S z
Assertion weiunse R We A R Se A x A B V T Se x A B

Proof

Step Hyp Ref Expression
1 weiun.1 F = w x A B ι u x A | w B | v x A | w B ¬ v R u
2 weiun.2 T = y z | y x A B z x A B F y R F z F y = F z y F y / x S z
3 simpl2 R We A R Se A x A B V p x A B R Se A
4 simpl1 R We A R Se A x A B V p x A B R We A
5 1 2 4 3 weiunlem2 R We A R Se A x A B V p x A B F : x A B A t x A B t F t / x B s A t s / x B ¬ s R F t
6 5 simp1d R We A R Se A x A B V p x A B F : x A B A
7 simpr R We A R Se A x A B V p x A B p x A B
8 6 7 ffvelcdmd R We A R Se A x A B V p x A B F p A
9 seex R Se A F p A r A | r R F p V
10 3 8 9 syl2anc R We A R Se A x A B V p x A B r A | r R F p V
11 snex F p V
12 unexg r A | r R F p V F p V r A | r R F p F p V
13 10 11 12 sylancl R We A R Se A x A B V p x A B r A | r R F p F p V
14 ssrab2 r A | r R F p A
15 14 a1i R We A R Se A x A B V p x A B r A | r R F p A
16 8 snssd R We A R Se A x A B V p x A B F p A
17 15 16 unssd R We A R Se A x A B V p x A B r A | r R F p F p A
18 simpl3 R We A R Se A x A B V p x A B x A B V
19 elex B V B V
20 19 ralimi x A B V x A B V
21 18 20 syl R We A R Se A x A B V p x A B x A B V
22 nfv s B V
23 nfcsb1v _ x s / x B
24 23 nfel1 x s / x B V
25 csbeq1a x = s B = s / x B
26 25 eleq1d x = s B V s / x B V
27 22 24 26 cbvralw x A B V s A s / x B V
28 21 27 sylib R We A R Se A x A B V p x A B s A s / x B V
29 ssralv r A | r R F p F p A s A s / x B V s r A | r R F p F p s / x B V
30 17 28 29 sylc R We A R Se A x A B V p x A B s r A | r R F p F p s / x B V
31 iunexg r A | r R F p F p V s r A | r R F p F p s / x B V s r A | r R F p F p s / x B V
32 13 30 31 syl2anc R We A R Se A x A B V p x A B s r A | r R F p F p s / x B V
33 6 3ad2ant1 R We A R Se A x A B V p x A B q x A B q T p F : x A B A
34 simp2 R We A R Se A x A B V p x A B q x A B q T p q x A B
35 33 34 ffvelcdmd R We A R Se A x A B V p x A B q x A B q T p F q A
36 breq1 r = F q r R F p F q R F p
37 36 elrab F q r A | r R F p F q A F q R F p
38 elun1 F q r A | r R F p F q r A | r R F p F p
39 37 38 sylbir F q A F q R F p F q r A | r R F p F p
40 35 39 sylan R We A R Se A x A B V p x A B q x A B q T p F q R F p F q r A | r R F p F p
41 fvex F q V
42 41 elsn F q F p F q = F p
43 elun2 F q F p F q r A | r R F p F p
44 42 43 sylbir F q = F p F q r A | r R F p F p
45 44 ad2antrl R We A R Se A x A B V p x A B q x A B q T p F q = F p q F q / x S p F q r A | r R F p F p
46 1 2 weiunlem1 q T p q x A B p x A B F q R F p F q = F p q F q / x S p
47 46 simprbi q T p F q R F p F q = F p q F q / x S p
48 47 3ad2ant3 R We A R Se A x A B V p x A B q x A B q T p F q R F p F q = F p q F q / x S p
49 40 45 48 mpjaodan R We A R Se A x A B V p x A B q x A B q T p F q r A | r R F p F p
50 id t = q t = q
51 fveq2 t = q F t = F q
52 51 csbeq1d t = q F t / x B = F q / x B
53 50 52 eleq12d t = q t F t / x B q F q / x B
54 5 simp2d R We A R Se A x A B V p x A B t x A B t F t / x B
55 54 3ad2ant1 R We A R Se A x A B V p x A B q x A B q T p t x A B t F t / x B
56 53 55 34 rspcdva R We A R Se A x A B V p x A B q x A B q T p q F q / x B
57 csbeq1 s = F q s / x B = F q / x B
58 57 eliuni F q r A | r R F p F p q F q / x B q s r A | r R F p F p s / x B
59 49 56 58 syl2anc R We A R Se A x A B V p x A B q x A B q T p q s r A | r R F p F p s / x B
60 59 rabssdv R We A R Se A x A B V p x A B q x A B | q T p s r A | r R F p F p s / x B
61 32 60 ssexd R We A R Se A x A B V p x A B q x A B | q T p V
62 61 ralrimiva R We A R Se A x A B V p x A B q x A B | q T p V
63 df-se T Se x A B p x A B q x A B | q T p V
64 62 63 sylibr R We A R Se A x A B V T Se x A B