Metamath Proof Explorer


Theorem weiunse

Description: The relation constructed in weiunpo , weiunso , weiunfr , and weiunwe is set-like if all members of the indexed union are sets. (Contributed by Matthew House, 23-Aug-2025)

Ref Expression
Hypotheses weiunse.1 F = w x A B ι u x A | w B | v x A | w B ¬ v R u
weiunse.2 T = y z | y x A B z x A B F y R F z F y = F z y F y / x S z
Assertion weiunse R We A R Se A x A B V T Se x A B

Proof

Step Hyp Ref Expression
1 weiunse.1 F = w x A B ι u x A | w B | v x A | w B ¬ v R u
2 weiunse.2 T = y z | y x A B z x A B F y R F z F y = F z y F y / x S z
3 simpl2 R We A R Se A x A B V p x A B R Se A
4 simpl1 R We A R Se A x A B V p x A B R We A
5 1 weiunlem2 R We A R Se A F : x A B A t x A B t F t / x B t x A B s A t s / x B ¬ s R F t
6 4 3 5 syl2anc R We A R Se A x A B V p x A B F : x A B A t x A B t F t / x B t x A B s A t s / x B ¬ s R F t
7 6 simp1d R We A R Se A x A B V p x A B F : x A B A
8 simpr R We A R Se A x A B V p x A B p x A B
9 7 8 ffvelcdmd R We A R Se A x A B V p x A B F p A
10 seex R Se A F p A r A | r R F p V
11 3 9 10 syl2anc R We A R Se A x A B V p x A B r A | r R F p V
12 snex F p V
13 unexg r A | r R F p V F p V r A | r R F p F p V
14 11 12 13 sylancl R We A R Se A x A B V p x A B r A | r R F p F p V
15 ssrab2 r A | r R F p A
16 15 a1i R We A R Se A x A B V p x A B r A | r R F p A
17 9 snssd R We A R Se A x A B V p x A B F p A
18 16 17 unssd R We A R Se A x A B V p x A B r A | r R F p F p A
19 simpl3 R We A R Se A x A B V p x A B x A B V
20 elex B V B V
21 20 ralimi x A B V x A B V
22 19 21 syl R We A R Se A x A B V p x A B x A B V
23 nfv s B V
24 nfcsb1v _ x s / x B
25 24 nfel1 x s / x B V
26 csbeq1a x = s B = s / x B
27 26 eleq1d x = s B V s / x B V
28 23 25 27 cbvralw x A B V s A s / x B V
29 22 28 sylib R We A R Se A x A B V p x A B s A s / x B V
30 ssralv r A | r R F p F p A s A s / x B V s r A | r R F p F p s / x B V
31 18 29 30 sylc R We A R Se A x A B V p x A B s r A | r R F p F p s / x B V
32 iunexg r A | r R F p F p V s r A | r R F p F p s / x B V s r A | r R F p F p s / x B V
33 14 31 32 syl2anc R We A R Se A x A B V p x A B s r A | r R F p F p s / x B V
34 7 3ad2ant1 R We A R Se A x A B V p x A B q x A B q T p F : x A B A
35 simp2 R We A R Se A x A B V p x A B q x A B q T p q x A B
36 34 35 ffvelcdmd R We A R Se A x A B V p x A B q x A B q T p F q A
37 breq1 r = F q r R F p F q R F p
38 37 elrab F q r A | r R F p F q A F q R F p
39 elun1 F q r A | r R F p F q r A | r R F p F p
40 38 39 sylbir F q A F q R F p F q r A | r R F p F p
41 36 40 sylan R We A R Se A x A B V p x A B q x A B q T p F q R F p F q r A | r R F p F p
42 fvex F q V
43 42 elsn F q F p F q = F p
44 elun2 F q F p F q r A | r R F p F p
45 43 44 sylbir F q = F p F q r A | r R F p F p
46 45 ad2antrl R We A R Se A x A B V p x A B q x A B q T p F q = F p q F q / x S p F q r A | r R F p F p
47 simpl y = q z = p y = q
48 47 fveq2d y = q z = p F y = F q
49 simpr y = q z = p z = p
50 49 fveq2d y = q z = p F z = F p
51 48 50 breq12d y = q z = p F y R F z F q R F p
52 48 50 eqeq12d y = q z = p F y = F z F q = F p
53 48 csbeq1d y = q z = p F y / x S = F q / x S
54 47 53 49 breq123d y = q z = p y F y / x S z q F q / x S p
55 52 54 anbi12d y = q z = p F y = F z y F y / x S z F q = F p q F q / x S p
56 51 55 orbi12d y = q z = p F y R F z F y = F z y F y / x S z F q R F p F q = F p q F q / x S p
57 56 2 brab2a q T p q x A B p x A B F q R F p F q = F p q F q / x S p
58 57 simprbi q T p F q R F p F q = F p q F q / x S p
59 58 3ad2ant3 R We A R Se A x A B V p x A B q x A B q T p F q R F p F q = F p q F q / x S p
60 41 46 59 mpjaodan R We A R Se A x A B V p x A B q x A B q T p F q r A | r R F p F p
61 id t = q t = q
62 fveq2 t = q F t = F q
63 62 csbeq1d t = q F t / x B = F q / x B
64 61 63 eleq12d t = q t F t / x B q F q / x B
65 6 simp2d R We A R Se A x A B V p x A B t x A B t F t / x B
66 65 3ad2ant1 R We A R Se A x A B V p x A B q x A B q T p t x A B t F t / x B
67 64 66 35 rspcdva R We A R Se A x A B V p x A B q x A B q T p q F q / x B
68 csbeq1 s = F q s / x B = F q / x B
69 68 eliuni F q r A | r R F p F p q F q / x B q s r A | r R F p F p s / x B
70 60 67 69 syl2anc R We A R Se A x A B V p x A B q x A B q T p q s r A | r R F p F p s / x B
71 70 rabssdv R We A R Se A x A B V p x A B q x A B | q T p s r A | r R F p F p s / x B
72 33 71 ssexd R We A R Se A x A B V p x A B q x A B | q T p V
73 72 ralrimiva R We A R Se A x A B V p x A B q x A B | q T p V
74 df-se T Se x A B p x A B q x A B | q T p V
75 73 74 sylibr R We A R Se A x A B V T Se x A B