Step |
Hyp |
Ref |
Expression |
1 |
|
weiun.1 |
|
2 |
|
weiun.2 |
|
3 |
|
simpl2 |
|
4 |
|
simpl1 |
|
5 |
1 2 4 3
|
weiunlem2 |
|
6 |
5
|
simp1d |
|
7 |
|
simpr |
|
8 |
6 7
|
ffvelcdmd |
|
9 |
|
seex |
|
10 |
3 8 9
|
syl2anc |
|
11 |
|
snex |
|
12 |
|
unexg |
|
13 |
10 11 12
|
sylancl |
|
14 |
|
ssrab2 |
|
15 |
14
|
a1i |
|
16 |
8
|
snssd |
|
17 |
15 16
|
unssd |
|
18 |
|
simpl3 |
|
19 |
|
elex |
|
20 |
19
|
ralimi |
|
21 |
18 20
|
syl |
|
22 |
|
nfv |
|
23 |
|
nfcsb1v |
|
24 |
23
|
nfel1 |
|
25 |
|
csbeq1a |
|
26 |
25
|
eleq1d |
|
27 |
22 24 26
|
cbvralw |
|
28 |
21 27
|
sylib |
|
29 |
|
ssralv |
|
30 |
17 28 29
|
sylc |
|
31 |
|
iunexg |
|
32 |
13 30 31
|
syl2anc |
|
33 |
6
|
3ad2ant1 |
|
34 |
|
simp2 |
|
35 |
33 34
|
ffvelcdmd |
|
36 |
|
breq1 |
|
37 |
36
|
elrab |
|
38 |
|
elun1 |
|
39 |
37 38
|
sylbir |
|
40 |
35 39
|
sylan |
|
41 |
|
fvex |
|
42 |
41
|
elsn |
|
43 |
|
elun2 |
|
44 |
42 43
|
sylbir |
|
45 |
44
|
ad2antrl |
|
46 |
1 2
|
weiunlem1 |
|
47 |
46
|
simprbi |
|
48 |
47
|
3ad2ant3 |
|
49 |
40 45 48
|
mpjaodan |
|
50 |
|
id |
|
51 |
|
fveq2 |
|
52 |
51
|
csbeq1d |
|
53 |
50 52
|
eleq12d |
|
54 |
5
|
simp2d |
|
55 |
54
|
3ad2ant1 |
|
56 |
53 55 34
|
rspcdva |
|
57 |
|
csbeq1 |
|
58 |
57
|
eliuni |
|
59 |
49 56 58
|
syl2anc |
|
60 |
59
|
rabssdv |
|
61 |
32 60
|
ssexd |
|
62 |
61
|
ralrimiva |
|
63 |
|
df-se |
|
64 |
62 63
|
sylibr |
|