Step |
Hyp |
Ref |
Expression |
1 |
|
weiunse.1 |
|
2 |
|
weiunse.2 |
|
3 |
|
simpl2 |
|
4 |
|
simpl1 |
|
5 |
1
|
weiunlem2 |
|
6 |
4 3 5
|
syl2anc |
|
7 |
6
|
simp1d |
|
8 |
|
simpr |
|
9 |
7 8
|
ffvelcdmd |
|
10 |
|
seex |
|
11 |
3 9 10
|
syl2anc |
|
12 |
|
snex |
|
13 |
|
unexg |
|
14 |
11 12 13
|
sylancl |
|
15 |
|
ssrab2 |
|
16 |
15
|
a1i |
|
17 |
9
|
snssd |
|
18 |
16 17
|
unssd |
|
19 |
|
simpl3 |
|
20 |
|
elex |
|
21 |
20
|
ralimi |
|
22 |
19 21
|
syl |
|
23 |
|
nfv |
|
24 |
|
nfcsb1v |
|
25 |
24
|
nfel1 |
|
26 |
|
csbeq1a |
|
27 |
26
|
eleq1d |
|
28 |
23 25 27
|
cbvralw |
|
29 |
22 28
|
sylib |
|
30 |
|
ssralv |
|
31 |
18 29 30
|
sylc |
|
32 |
|
iunexg |
|
33 |
14 31 32
|
syl2anc |
|
34 |
7
|
3ad2ant1 |
|
35 |
|
simp2 |
|
36 |
34 35
|
ffvelcdmd |
|
37 |
|
breq1 |
|
38 |
37
|
elrab |
|
39 |
|
elun1 |
|
40 |
38 39
|
sylbir |
|
41 |
36 40
|
sylan |
|
42 |
|
fvex |
|
43 |
42
|
elsn |
|
44 |
|
elun2 |
|
45 |
43 44
|
sylbir |
|
46 |
45
|
ad2antrl |
|
47 |
|
simpl |
|
48 |
47
|
fveq2d |
|
49 |
|
simpr |
|
50 |
49
|
fveq2d |
|
51 |
48 50
|
breq12d |
|
52 |
48 50
|
eqeq12d |
|
53 |
48
|
csbeq1d |
|
54 |
47 53 49
|
breq123d |
|
55 |
52 54
|
anbi12d |
|
56 |
51 55
|
orbi12d |
|
57 |
56 2
|
brab2a |
|
58 |
57
|
simprbi |
|
59 |
58
|
3ad2ant3 |
|
60 |
41 46 59
|
mpjaodan |
|
61 |
|
id |
|
62 |
|
fveq2 |
|
63 |
62
|
csbeq1d |
|
64 |
61 63
|
eleq12d |
|
65 |
6
|
simp2d |
|
66 |
65
|
3ad2ant1 |
|
67 |
64 66 35
|
rspcdva |
|
68 |
|
csbeq1 |
|
69 |
68
|
eliuni |
|
70 |
60 67 69
|
syl2anc |
|
71 |
70
|
rabssdv |
|
72 |
33 71
|
ssexd |
|
73 |
72
|
ralrimiva |
|
74 |
|
df-se |
|
75 |
73 74
|
sylibr |
|