Step |
Hyp |
Ref |
Expression |
1 |
|
weiunse.1 |
⊢ 𝐹 = ( 𝑤 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↦ ( ℩ 𝑢 ∈ { 𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵 } ∀ 𝑣 ∈ { 𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵 } ¬ 𝑣 𝑅 𝑢 ) ) |
2 |
|
weiunse.2 |
⊢ 𝑇 = { 〈 𝑦 , 𝑧 〉 ∣ ( ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ∧ ( ( 𝐹 ‘ 𝑦 ) 𝑅 ( 𝐹 ‘ 𝑧 ) ∨ ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) ∧ 𝑦 ⦋ ( 𝐹 ‘ 𝑦 ) / 𝑥 ⦌ 𝑆 𝑧 ) ) ) } |
3 |
|
simpl2 |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 ) ∧ 𝑝 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) → 𝑅 Se 𝐴 ) |
4 |
|
simpl1 |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 ) ∧ 𝑝 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) → 𝑅 We 𝐴 ) |
5 |
1
|
weiunlem2 |
⊢ ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) → ( 𝐹 : ∪ 𝑥 ∈ 𝐴 𝐵 ⟶ 𝐴 ∧ ∀ 𝑡 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 𝑡 ∈ ⦋ ( 𝐹 ‘ 𝑡 ) / 𝑥 ⦌ 𝐵 ∧ ∀ 𝑡 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∀ 𝑠 ∈ 𝐴 ( 𝑡 ∈ ⦋ 𝑠 / 𝑥 ⦌ 𝐵 → ¬ 𝑠 𝑅 ( 𝐹 ‘ 𝑡 ) ) ) ) |
6 |
4 3 5
|
syl2anc |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 ) ∧ 𝑝 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) → ( 𝐹 : ∪ 𝑥 ∈ 𝐴 𝐵 ⟶ 𝐴 ∧ ∀ 𝑡 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 𝑡 ∈ ⦋ ( 𝐹 ‘ 𝑡 ) / 𝑥 ⦌ 𝐵 ∧ ∀ 𝑡 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∀ 𝑠 ∈ 𝐴 ( 𝑡 ∈ ⦋ 𝑠 / 𝑥 ⦌ 𝐵 → ¬ 𝑠 𝑅 ( 𝐹 ‘ 𝑡 ) ) ) ) |
7 |
6
|
simp1d |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 ) ∧ 𝑝 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) → 𝐹 : ∪ 𝑥 ∈ 𝐴 𝐵 ⟶ 𝐴 ) |
8 |
|
simpr |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 ) ∧ 𝑝 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) → 𝑝 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
9 |
7 8
|
ffvelcdmd |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 ) ∧ 𝑝 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) → ( 𝐹 ‘ 𝑝 ) ∈ 𝐴 ) |
10 |
|
seex |
⊢ ( ( 𝑅 Se 𝐴 ∧ ( 𝐹 ‘ 𝑝 ) ∈ 𝐴 ) → { 𝑟 ∈ 𝐴 ∣ 𝑟 𝑅 ( 𝐹 ‘ 𝑝 ) } ∈ V ) |
11 |
3 9 10
|
syl2anc |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 ) ∧ 𝑝 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) → { 𝑟 ∈ 𝐴 ∣ 𝑟 𝑅 ( 𝐹 ‘ 𝑝 ) } ∈ V ) |
12 |
|
snex |
⊢ { ( 𝐹 ‘ 𝑝 ) } ∈ V |
13 |
|
unexg |
⊢ ( ( { 𝑟 ∈ 𝐴 ∣ 𝑟 𝑅 ( 𝐹 ‘ 𝑝 ) } ∈ V ∧ { ( 𝐹 ‘ 𝑝 ) } ∈ V ) → ( { 𝑟 ∈ 𝐴 ∣ 𝑟 𝑅 ( 𝐹 ‘ 𝑝 ) } ∪ { ( 𝐹 ‘ 𝑝 ) } ) ∈ V ) |
14 |
11 12 13
|
sylancl |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 ) ∧ 𝑝 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) → ( { 𝑟 ∈ 𝐴 ∣ 𝑟 𝑅 ( 𝐹 ‘ 𝑝 ) } ∪ { ( 𝐹 ‘ 𝑝 ) } ) ∈ V ) |
15 |
|
ssrab2 |
⊢ { 𝑟 ∈ 𝐴 ∣ 𝑟 𝑅 ( 𝐹 ‘ 𝑝 ) } ⊆ 𝐴 |
16 |
15
|
a1i |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 ) ∧ 𝑝 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) → { 𝑟 ∈ 𝐴 ∣ 𝑟 𝑅 ( 𝐹 ‘ 𝑝 ) } ⊆ 𝐴 ) |
17 |
9
|
snssd |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 ) ∧ 𝑝 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) → { ( 𝐹 ‘ 𝑝 ) } ⊆ 𝐴 ) |
18 |
16 17
|
unssd |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 ) ∧ 𝑝 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) → ( { 𝑟 ∈ 𝐴 ∣ 𝑟 𝑅 ( 𝐹 ‘ 𝑝 ) } ∪ { ( 𝐹 ‘ 𝑝 ) } ) ⊆ 𝐴 ) |
19 |
|
simpl3 |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 ) ∧ 𝑝 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) → ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 ) |
20 |
|
elex |
⊢ ( 𝐵 ∈ 𝑉 → 𝐵 ∈ V ) |
21 |
20
|
ralimi |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → ∀ 𝑥 ∈ 𝐴 𝐵 ∈ V ) |
22 |
19 21
|
syl |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 ) ∧ 𝑝 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) → ∀ 𝑥 ∈ 𝐴 𝐵 ∈ V ) |
23 |
|
nfv |
⊢ Ⅎ 𝑠 𝐵 ∈ V |
24 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑠 / 𝑥 ⦌ 𝐵 |
25 |
24
|
nfel1 |
⊢ Ⅎ 𝑥 ⦋ 𝑠 / 𝑥 ⦌ 𝐵 ∈ V |
26 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑠 → 𝐵 = ⦋ 𝑠 / 𝑥 ⦌ 𝐵 ) |
27 |
26
|
eleq1d |
⊢ ( 𝑥 = 𝑠 → ( 𝐵 ∈ V ↔ ⦋ 𝑠 / 𝑥 ⦌ 𝐵 ∈ V ) ) |
28 |
23 25 27
|
cbvralw |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ V ↔ ∀ 𝑠 ∈ 𝐴 ⦋ 𝑠 / 𝑥 ⦌ 𝐵 ∈ V ) |
29 |
22 28
|
sylib |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 ) ∧ 𝑝 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) → ∀ 𝑠 ∈ 𝐴 ⦋ 𝑠 / 𝑥 ⦌ 𝐵 ∈ V ) |
30 |
|
ssralv |
⊢ ( ( { 𝑟 ∈ 𝐴 ∣ 𝑟 𝑅 ( 𝐹 ‘ 𝑝 ) } ∪ { ( 𝐹 ‘ 𝑝 ) } ) ⊆ 𝐴 → ( ∀ 𝑠 ∈ 𝐴 ⦋ 𝑠 / 𝑥 ⦌ 𝐵 ∈ V → ∀ 𝑠 ∈ ( { 𝑟 ∈ 𝐴 ∣ 𝑟 𝑅 ( 𝐹 ‘ 𝑝 ) } ∪ { ( 𝐹 ‘ 𝑝 ) } ) ⦋ 𝑠 / 𝑥 ⦌ 𝐵 ∈ V ) ) |
31 |
18 29 30
|
sylc |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 ) ∧ 𝑝 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) → ∀ 𝑠 ∈ ( { 𝑟 ∈ 𝐴 ∣ 𝑟 𝑅 ( 𝐹 ‘ 𝑝 ) } ∪ { ( 𝐹 ‘ 𝑝 ) } ) ⦋ 𝑠 / 𝑥 ⦌ 𝐵 ∈ V ) |
32 |
|
iunexg |
⊢ ( ( ( { 𝑟 ∈ 𝐴 ∣ 𝑟 𝑅 ( 𝐹 ‘ 𝑝 ) } ∪ { ( 𝐹 ‘ 𝑝 ) } ) ∈ V ∧ ∀ 𝑠 ∈ ( { 𝑟 ∈ 𝐴 ∣ 𝑟 𝑅 ( 𝐹 ‘ 𝑝 ) } ∪ { ( 𝐹 ‘ 𝑝 ) } ) ⦋ 𝑠 / 𝑥 ⦌ 𝐵 ∈ V ) → ∪ 𝑠 ∈ ( { 𝑟 ∈ 𝐴 ∣ 𝑟 𝑅 ( 𝐹 ‘ 𝑝 ) } ∪ { ( 𝐹 ‘ 𝑝 ) } ) ⦋ 𝑠 / 𝑥 ⦌ 𝐵 ∈ V ) |
33 |
14 31 32
|
syl2anc |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 ) ∧ 𝑝 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) → ∪ 𝑠 ∈ ( { 𝑟 ∈ 𝐴 ∣ 𝑟 𝑅 ( 𝐹 ‘ 𝑝 ) } ∪ { ( 𝐹 ‘ 𝑝 ) } ) ⦋ 𝑠 / 𝑥 ⦌ 𝐵 ∈ V ) |
34 |
7
|
3ad2ant1 |
⊢ ( ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 ) ∧ 𝑝 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ∧ 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑞 𝑇 𝑝 ) → 𝐹 : ∪ 𝑥 ∈ 𝐴 𝐵 ⟶ 𝐴 ) |
35 |
|
simp2 |
⊢ ( ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 ) ∧ 𝑝 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ∧ 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑞 𝑇 𝑝 ) → 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
36 |
34 35
|
ffvelcdmd |
⊢ ( ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 ) ∧ 𝑝 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ∧ 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑞 𝑇 𝑝 ) → ( 𝐹 ‘ 𝑞 ) ∈ 𝐴 ) |
37 |
|
breq1 |
⊢ ( 𝑟 = ( 𝐹 ‘ 𝑞 ) → ( 𝑟 𝑅 ( 𝐹 ‘ 𝑝 ) ↔ ( 𝐹 ‘ 𝑞 ) 𝑅 ( 𝐹 ‘ 𝑝 ) ) ) |
38 |
37
|
elrab |
⊢ ( ( 𝐹 ‘ 𝑞 ) ∈ { 𝑟 ∈ 𝐴 ∣ 𝑟 𝑅 ( 𝐹 ‘ 𝑝 ) } ↔ ( ( 𝐹 ‘ 𝑞 ) ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑞 ) 𝑅 ( 𝐹 ‘ 𝑝 ) ) ) |
39 |
|
elun1 |
⊢ ( ( 𝐹 ‘ 𝑞 ) ∈ { 𝑟 ∈ 𝐴 ∣ 𝑟 𝑅 ( 𝐹 ‘ 𝑝 ) } → ( 𝐹 ‘ 𝑞 ) ∈ ( { 𝑟 ∈ 𝐴 ∣ 𝑟 𝑅 ( 𝐹 ‘ 𝑝 ) } ∪ { ( 𝐹 ‘ 𝑝 ) } ) ) |
40 |
38 39
|
sylbir |
⊢ ( ( ( 𝐹 ‘ 𝑞 ) ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑞 ) 𝑅 ( 𝐹 ‘ 𝑝 ) ) → ( 𝐹 ‘ 𝑞 ) ∈ ( { 𝑟 ∈ 𝐴 ∣ 𝑟 𝑅 ( 𝐹 ‘ 𝑝 ) } ∪ { ( 𝐹 ‘ 𝑝 ) } ) ) |
41 |
36 40
|
sylan |
⊢ ( ( ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 ) ∧ 𝑝 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ∧ 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑞 𝑇 𝑝 ) ∧ ( 𝐹 ‘ 𝑞 ) 𝑅 ( 𝐹 ‘ 𝑝 ) ) → ( 𝐹 ‘ 𝑞 ) ∈ ( { 𝑟 ∈ 𝐴 ∣ 𝑟 𝑅 ( 𝐹 ‘ 𝑝 ) } ∪ { ( 𝐹 ‘ 𝑝 ) } ) ) |
42 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑞 ) ∈ V |
43 |
42
|
elsn |
⊢ ( ( 𝐹 ‘ 𝑞 ) ∈ { ( 𝐹 ‘ 𝑝 ) } ↔ ( 𝐹 ‘ 𝑞 ) = ( 𝐹 ‘ 𝑝 ) ) |
44 |
|
elun2 |
⊢ ( ( 𝐹 ‘ 𝑞 ) ∈ { ( 𝐹 ‘ 𝑝 ) } → ( 𝐹 ‘ 𝑞 ) ∈ ( { 𝑟 ∈ 𝐴 ∣ 𝑟 𝑅 ( 𝐹 ‘ 𝑝 ) } ∪ { ( 𝐹 ‘ 𝑝 ) } ) ) |
45 |
43 44
|
sylbir |
⊢ ( ( 𝐹 ‘ 𝑞 ) = ( 𝐹 ‘ 𝑝 ) → ( 𝐹 ‘ 𝑞 ) ∈ ( { 𝑟 ∈ 𝐴 ∣ 𝑟 𝑅 ( 𝐹 ‘ 𝑝 ) } ∪ { ( 𝐹 ‘ 𝑝 ) } ) ) |
46 |
45
|
ad2antrl |
⊢ ( ( ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 ) ∧ 𝑝 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ∧ 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑞 𝑇 𝑝 ) ∧ ( ( 𝐹 ‘ 𝑞 ) = ( 𝐹 ‘ 𝑝 ) ∧ 𝑞 ⦋ ( 𝐹 ‘ 𝑞 ) / 𝑥 ⦌ 𝑆 𝑝 ) ) → ( 𝐹 ‘ 𝑞 ) ∈ ( { 𝑟 ∈ 𝐴 ∣ 𝑟 𝑅 ( 𝐹 ‘ 𝑝 ) } ∪ { ( 𝐹 ‘ 𝑝 ) } ) ) |
47 |
|
simpl |
⊢ ( ( 𝑦 = 𝑞 ∧ 𝑧 = 𝑝 ) → 𝑦 = 𝑞 ) |
48 |
47
|
fveq2d |
⊢ ( ( 𝑦 = 𝑞 ∧ 𝑧 = 𝑝 ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑞 ) ) |
49 |
|
simpr |
⊢ ( ( 𝑦 = 𝑞 ∧ 𝑧 = 𝑝 ) → 𝑧 = 𝑝 ) |
50 |
49
|
fveq2d |
⊢ ( ( 𝑦 = 𝑞 ∧ 𝑧 = 𝑝 ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑝 ) ) |
51 |
48 50
|
breq12d |
⊢ ( ( 𝑦 = 𝑞 ∧ 𝑧 = 𝑝 ) → ( ( 𝐹 ‘ 𝑦 ) 𝑅 ( 𝐹 ‘ 𝑧 ) ↔ ( 𝐹 ‘ 𝑞 ) 𝑅 ( 𝐹 ‘ 𝑝 ) ) ) |
52 |
48 50
|
eqeq12d |
⊢ ( ( 𝑦 = 𝑞 ∧ 𝑧 = 𝑝 ) → ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) ↔ ( 𝐹 ‘ 𝑞 ) = ( 𝐹 ‘ 𝑝 ) ) ) |
53 |
48
|
csbeq1d |
⊢ ( ( 𝑦 = 𝑞 ∧ 𝑧 = 𝑝 ) → ⦋ ( 𝐹 ‘ 𝑦 ) / 𝑥 ⦌ 𝑆 = ⦋ ( 𝐹 ‘ 𝑞 ) / 𝑥 ⦌ 𝑆 ) |
54 |
47 53 49
|
breq123d |
⊢ ( ( 𝑦 = 𝑞 ∧ 𝑧 = 𝑝 ) → ( 𝑦 ⦋ ( 𝐹 ‘ 𝑦 ) / 𝑥 ⦌ 𝑆 𝑧 ↔ 𝑞 ⦋ ( 𝐹 ‘ 𝑞 ) / 𝑥 ⦌ 𝑆 𝑝 ) ) |
55 |
52 54
|
anbi12d |
⊢ ( ( 𝑦 = 𝑞 ∧ 𝑧 = 𝑝 ) → ( ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) ∧ 𝑦 ⦋ ( 𝐹 ‘ 𝑦 ) / 𝑥 ⦌ 𝑆 𝑧 ) ↔ ( ( 𝐹 ‘ 𝑞 ) = ( 𝐹 ‘ 𝑝 ) ∧ 𝑞 ⦋ ( 𝐹 ‘ 𝑞 ) / 𝑥 ⦌ 𝑆 𝑝 ) ) ) |
56 |
51 55
|
orbi12d |
⊢ ( ( 𝑦 = 𝑞 ∧ 𝑧 = 𝑝 ) → ( ( ( 𝐹 ‘ 𝑦 ) 𝑅 ( 𝐹 ‘ 𝑧 ) ∨ ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) ∧ 𝑦 ⦋ ( 𝐹 ‘ 𝑦 ) / 𝑥 ⦌ 𝑆 𝑧 ) ) ↔ ( ( 𝐹 ‘ 𝑞 ) 𝑅 ( 𝐹 ‘ 𝑝 ) ∨ ( ( 𝐹 ‘ 𝑞 ) = ( 𝐹 ‘ 𝑝 ) ∧ 𝑞 ⦋ ( 𝐹 ‘ 𝑞 ) / 𝑥 ⦌ 𝑆 𝑝 ) ) ) ) |
57 |
56 2
|
brab2a |
⊢ ( 𝑞 𝑇 𝑝 ↔ ( ( 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑝 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ∧ ( ( 𝐹 ‘ 𝑞 ) 𝑅 ( 𝐹 ‘ 𝑝 ) ∨ ( ( 𝐹 ‘ 𝑞 ) = ( 𝐹 ‘ 𝑝 ) ∧ 𝑞 ⦋ ( 𝐹 ‘ 𝑞 ) / 𝑥 ⦌ 𝑆 𝑝 ) ) ) ) |
58 |
57
|
simprbi |
⊢ ( 𝑞 𝑇 𝑝 → ( ( 𝐹 ‘ 𝑞 ) 𝑅 ( 𝐹 ‘ 𝑝 ) ∨ ( ( 𝐹 ‘ 𝑞 ) = ( 𝐹 ‘ 𝑝 ) ∧ 𝑞 ⦋ ( 𝐹 ‘ 𝑞 ) / 𝑥 ⦌ 𝑆 𝑝 ) ) ) |
59 |
58
|
3ad2ant3 |
⊢ ( ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 ) ∧ 𝑝 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ∧ 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑞 𝑇 𝑝 ) → ( ( 𝐹 ‘ 𝑞 ) 𝑅 ( 𝐹 ‘ 𝑝 ) ∨ ( ( 𝐹 ‘ 𝑞 ) = ( 𝐹 ‘ 𝑝 ) ∧ 𝑞 ⦋ ( 𝐹 ‘ 𝑞 ) / 𝑥 ⦌ 𝑆 𝑝 ) ) ) |
60 |
41 46 59
|
mpjaodan |
⊢ ( ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 ) ∧ 𝑝 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ∧ 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑞 𝑇 𝑝 ) → ( 𝐹 ‘ 𝑞 ) ∈ ( { 𝑟 ∈ 𝐴 ∣ 𝑟 𝑅 ( 𝐹 ‘ 𝑝 ) } ∪ { ( 𝐹 ‘ 𝑝 ) } ) ) |
61 |
|
id |
⊢ ( 𝑡 = 𝑞 → 𝑡 = 𝑞 ) |
62 |
|
fveq2 |
⊢ ( 𝑡 = 𝑞 → ( 𝐹 ‘ 𝑡 ) = ( 𝐹 ‘ 𝑞 ) ) |
63 |
62
|
csbeq1d |
⊢ ( 𝑡 = 𝑞 → ⦋ ( 𝐹 ‘ 𝑡 ) / 𝑥 ⦌ 𝐵 = ⦋ ( 𝐹 ‘ 𝑞 ) / 𝑥 ⦌ 𝐵 ) |
64 |
61 63
|
eleq12d |
⊢ ( 𝑡 = 𝑞 → ( 𝑡 ∈ ⦋ ( 𝐹 ‘ 𝑡 ) / 𝑥 ⦌ 𝐵 ↔ 𝑞 ∈ ⦋ ( 𝐹 ‘ 𝑞 ) / 𝑥 ⦌ 𝐵 ) ) |
65 |
6
|
simp2d |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 ) ∧ 𝑝 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) → ∀ 𝑡 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 𝑡 ∈ ⦋ ( 𝐹 ‘ 𝑡 ) / 𝑥 ⦌ 𝐵 ) |
66 |
65
|
3ad2ant1 |
⊢ ( ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 ) ∧ 𝑝 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ∧ 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑞 𝑇 𝑝 ) → ∀ 𝑡 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 𝑡 ∈ ⦋ ( 𝐹 ‘ 𝑡 ) / 𝑥 ⦌ 𝐵 ) |
67 |
64 66 35
|
rspcdva |
⊢ ( ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 ) ∧ 𝑝 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ∧ 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑞 𝑇 𝑝 ) → 𝑞 ∈ ⦋ ( 𝐹 ‘ 𝑞 ) / 𝑥 ⦌ 𝐵 ) |
68 |
|
csbeq1 |
⊢ ( 𝑠 = ( 𝐹 ‘ 𝑞 ) → ⦋ 𝑠 / 𝑥 ⦌ 𝐵 = ⦋ ( 𝐹 ‘ 𝑞 ) / 𝑥 ⦌ 𝐵 ) |
69 |
68
|
eliuni |
⊢ ( ( ( 𝐹 ‘ 𝑞 ) ∈ ( { 𝑟 ∈ 𝐴 ∣ 𝑟 𝑅 ( 𝐹 ‘ 𝑝 ) } ∪ { ( 𝐹 ‘ 𝑝 ) } ) ∧ 𝑞 ∈ ⦋ ( 𝐹 ‘ 𝑞 ) / 𝑥 ⦌ 𝐵 ) → 𝑞 ∈ ∪ 𝑠 ∈ ( { 𝑟 ∈ 𝐴 ∣ 𝑟 𝑅 ( 𝐹 ‘ 𝑝 ) } ∪ { ( 𝐹 ‘ 𝑝 ) } ) ⦋ 𝑠 / 𝑥 ⦌ 𝐵 ) |
70 |
60 67 69
|
syl2anc |
⊢ ( ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 ) ∧ 𝑝 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ∧ 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑞 𝑇 𝑝 ) → 𝑞 ∈ ∪ 𝑠 ∈ ( { 𝑟 ∈ 𝐴 ∣ 𝑟 𝑅 ( 𝐹 ‘ 𝑝 ) } ∪ { ( 𝐹 ‘ 𝑝 ) } ) ⦋ 𝑠 / 𝑥 ⦌ 𝐵 ) |
71 |
70
|
rabssdv |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 ) ∧ 𝑝 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) → { 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∣ 𝑞 𝑇 𝑝 } ⊆ ∪ 𝑠 ∈ ( { 𝑟 ∈ 𝐴 ∣ 𝑟 𝑅 ( 𝐹 ‘ 𝑝 ) } ∪ { ( 𝐹 ‘ 𝑝 ) } ) ⦋ 𝑠 / 𝑥 ⦌ 𝐵 ) |
72 |
33 71
|
ssexd |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 ) ∧ 𝑝 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) → { 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∣ 𝑞 𝑇 𝑝 } ∈ V ) |
73 |
72
|
ralrimiva |
⊢ ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 ) → ∀ 𝑝 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 { 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∣ 𝑞 𝑇 𝑝 } ∈ V ) |
74 |
|
df-se |
⊢ ( 𝑇 Se ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∀ 𝑝 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 { 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∣ 𝑞 𝑇 𝑝 } ∈ V ) |
75 |
73 74
|
sylibr |
⊢ ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 ) → 𝑇 Se ∪ 𝑥 ∈ 𝐴 𝐵 ) |