Metamath Proof Explorer


Theorem weiunlem2

Description: Lemma for weiunpo , weiunso , and weiunse . (Contributed by Matthew House, 23-Aug-2025)

Ref Expression
Hypothesis weiunlem2.1 𝐹 = ( 𝑤 𝑥𝐴 𝐵 ↦ ( 𝑢 ∈ { 𝑥𝐴𝑤𝐵 } ∀ 𝑣 ∈ { 𝑥𝐴𝑤𝐵 } ¬ 𝑣 𝑅 𝑢 ) )
Assertion weiunlem2 ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ) → ( 𝐹 : 𝑥𝐴 𝐵𝐴 ∧ ∀ 𝑡 𝑥𝐴 𝐵 𝑡 ( 𝐹𝑡 ) / 𝑥 𝐵 ∧ ∀ 𝑡 𝑥𝐴 𝐵𝑠𝐴 ( 𝑡 𝑠 / 𝑥 𝐵 → ¬ 𝑠 𝑅 ( 𝐹𝑡 ) ) ) )

Proof

Step Hyp Ref Expression
1 weiunlem2.1 𝐹 = ( 𝑤 𝑥𝐴 𝐵 ↦ ( 𝑢 ∈ { 𝑥𝐴𝑤𝐵 } ∀ 𝑣 ∈ { 𝑥𝐴𝑤𝐵 } ¬ 𝑣 𝑅 𝑢 ) )
2 1 weiunlem1 ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ) → ( 𝐹 : 𝑥𝐴 𝐵𝐴 ∧ ∀ 𝑤 𝑥𝐴 𝐵 𝑤 ( 𝐹𝑤 ) / 𝑥 𝐵 ∧ ∀ 𝑤 𝑥𝐴 𝐵𝑣𝐴 ( 𝑤 𝑣 / 𝑥 𝐵 → ¬ 𝑣 𝑅 ( 𝐹𝑤 ) ) ) )
3 biid ( 𝐹 : 𝑥𝐴 𝐵𝐴𝐹 : 𝑥𝐴 𝐵𝐴 )
4 nfv 𝑡 𝑤 ( 𝐹𝑤 ) / 𝑥 𝐵
5 nfmpt1 𝑤 ( 𝑤 𝑥𝐴 𝐵 ↦ ( 𝑢 ∈ { 𝑥𝐴𝑤𝐵 } ∀ 𝑣 ∈ { 𝑥𝐴𝑤𝐵 } ¬ 𝑣 𝑅 𝑢 ) )
6 1 5 nfcxfr 𝑤 𝐹
7 nfcv 𝑤 𝑡
8 6 7 nffv 𝑤 ( 𝐹𝑡 )
9 nfcv 𝑤 𝐵
10 8 9 nfcsbw 𝑤 ( 𝐹𝑡 ) / 𝑥 𝐵
11 10 nfcri 𝑤 𝑡 ( 𝐹𝑡 ) / 𝑥 𝐵
12 id ( 𝑤 = 𝑡𝑤 = 𝑡 )
13 fveq2 ( 𝑤 = 𝑡 → ( 𝐹𝑤 ) = ( 𝐹𝑡 ) )
14 13 csbeq1d ( 𝑤 = 𝑡 ( 𝐹𝑤 ) / 𝑥 𝐵 = ( 𝐹𝑡 ) / 𝑥 𝐵 )
15 12 14 eleq12d ( 𝑤 = 𝑡 → ( 𝑤 ( 𝐹𝑤 ) / 𝑥 𝐵𝑡 ( 𝐹𝑡 ) / 𝑥 𝐵 ) )
16 4 11 15 cbvralw ( ∀ 𝑤 𝑥𝐴 𝐵 𝑤 ( 𝐹𝑤 ) / 𝑥 𝐵 ↔ ∀ 𝑡 𝑥𝐴 𝐵 𝑡 ( 𝐹𝑡 ) / 𝑥 𝐵 )
17 nfv 𝑡𝑣𝐴 ( 𝑤 𝑣 / 𝑥 𝐵 → ¬ 𝑣 𝑅 ( 𝐹𝑤 ) )
18 nfcv 𝑤 𝐴
19 nfv 𝑤 𝑡 𝑠 / 𝑥 𝐵
20 nfcv 𝑤 𝑠
21 nfcv 𝑤 𝑅
22 20 21 8 nfbr 𝑤 𝑠 𝑅 ( 𝐹𝑡 )
23 22 nfn 𝑤 ¬ 𝑠 𝑅 ( 𝐹𝑡 )
24 19 23 nfim 𝑤 ( 𝑡 𝑠 / 𝑥 𝐵 → ¬ 𝑠 𝑅 ( 𝐹𝑡 ) )
25 18 24 nfralw 𝑤𝑠𝐴 ( 𝑡 𝑠 / 𝑥 𝐵 → ¬ 𝑠 𝑅 ( 𝐹𝑡 ) )
26 nfv 𝑠 ( 𝑤 𝑣 / 𝑥 𝐵 → ¬ 𝑣 𝑅 ( 𝐹𝑤 ) )
27 nfv 𝑣 𝑤 𝑠 / 𝑥 𝐵
28 nfcv 𝑣 𝑠
29 nfcv 𝑣 𝑅
30 nfcv 𝑣 𝑥𝐴 𝐵
31 nfra1 𝑣𝑣 ∈ { 𝑥𝐴𝑤𝐵 } ¬ 𝑣 𝑅 𝑢
32 nfcv 𝑣 { 𝑥𝐴𝑤𝐵 }
33 31 32 nfriota 𝑣 ( 𝑢 ∈ { 𝑥𝐴𝑤𝐵 } ∀ 𝑣 ∈ { 𝑥𝐴𝑤𝐵 } ¬ 𝑣 𝑅 𝑢 )
34 30 33 nfmpt 𝑣 ( 𝑤 𝑥𝐴 𝐵 ↦ ( 𝑢 ∈ { 𝑥𝐴𝑤𝐵 } ∀ 𝑣 ∈ { 𝑥𝐴𝑤𝐵 } ¬ 𝑣 𝑅 𝑢 ) )
35 1 34 nfcxfr 𝑣 𝐹
36 nfcv 𝑣 𝑤
37 35 36 nffv 𝑣 ( 𝐹𝑤 )
38 28 29 37 nfbr 𝑣 𝑠 𝑅 ( 𝐹𝑤 )
39 38 nfn 𝑣 ¬ 𝑠 𝑅 ( 𝐹𝑤 )
40 27 39 nfim 𝑣 ( 𝑤 𝑠 / 𝑥 𝐵 → ¬ 𝑠 𝑅 ( 𝐹𝑤 ) )
41 csbeq1 ( 𝑣 = 𝑠 𝑣 / 𝑥 𝐵 = 𝑠 / 𝑥 𝐵 )
42 41 eleq2d ( 𝑣 = 𝑠 → ( 𝑤 𝑣 / 𝑥 𝐵𝑤 𝑠 / 𝑥 𝐵 ) )
43 breq1 ( 𝑣 = 𝑠 → ( 𝑣 𝑅 ( 𝐹𝑤 ) ↔ 𝑠 𝑅 ( 𝐹𝑤 ) ) )
44 43 notbid ( 𝑣 = 𝑠 → ( ¬ 𝑣 𝑅 ( 𝐹𝑤 ) ↔ ¬ 𝑠 𝑅 ( 𝐹𝑤 ) ) )
45 42 44 imbi12d ( 𝑣 = 𝑠 → ( ( 𝑤 𝑣 / 𝑥 𝐵 → ¬ 𝑣 𝑅 ( 𝐹𝑤 ) ) ↔ ( 𝑤 𝑠 / 𝑥 𝐵 → ¬ 𝑠 𝑅 ( 𝐹𝑤 ) ) ) )
46 26 40 45 cbvralw ( ∀ 𝑣𝐴 ( 𝑤 𝑣 / 𝑥 𝐵 → ¬ 𝑣 𝑅 ( 𝐹𝑤 ) ) ↔ ∀ 𝑠𝐴 ( 𝑤 𝑠 / 𝑥 𝐵 → ¬ 𝑠 𝑅 ( 𝐹𝑤 ) ) )
47 eleq1w ( 𝑤 = 𝑡 → ( 𝑤 𝑠 / 𝑥 𝐵𝑡 𝑠 / 𝑥 𝐵 ) )
48 13 breq2d ( 𝑤 = 𝑡 → ( 𝑠 𝑅 ( 𝐹𝑤 ) ↔ 𝑠 𝑅 ( 𝐹𝑡 ) ) )
49 48 notbid ( 𝑤 = 𝑡 → ( ¬ 𝑠 𝑅 ( 𝐹𝑤 ) ↔ ¬ 𝑠 𝑅 ( 𝐹𝑡 ) ) )
50 47 49 imbi12d ( 𝑤 = 𝑡 → ( ( 𝑤 𝑠 / 𝑥 𝐵 → ¬ 𝑠 𝑅 ( 𝐹𝑤 ) ) ↔ ( 𝑡 𝑠 / 𝑥 𝐵 → ¬ 𝑠 𝑅 ( 𝐹𝑡 ) ) ) )
51 50 ralbidv ( 𝑤 = 𝑡 → ( ∀ 𝑠𝐴 ( 𝑤 𝑠 / 𝑥 𝐵 → ¬ 𝑠 𝑅 ( 𝐹𝑤 ) ) ↔ ∀ 𝑠𝐴 ( 𝑡 𝑠 / 𝑥 𝐵 → ¬ 𝑠 𝑅 ( 𝐹𝑡 ) ) ) )
52 46 51 bitrid ( 𝑤 = 𝑡 → ( ∀ 𝑣𝐴 ( 𝑤 𝑣 / 𝑥 𝐵 → ¬ 𝑣 𝑅 ( 𝐹𝑤 ) ) ↔ ∀ 𝑠𝐴 ( 𝑡 𝑠 / 𝑥 𝐵 → ¬ 𝑠 𝑅 ( 𝐹𝑡 ) ) ) )
53 17 25 52 cbvralw ( ∀ 𝑤 𝑥𝐴 𝐵𝑣𝐴 ( 𝑤 𝑣 / 𝑥 𝐵 → ¬ 𝑣 𝑅 ( 𝐹𝑤 ) ) ↔ ∀ 𝑡 𝑥𝐴 𝐵𝑠𝐴 ( 𝑡 𝑠 / 𝑥 𝐵 → ¬ 𝑠 𝑅 ( 𝐹𝑡 ) ) )
54 3 16 53 3anbi123i ( ( 𝐹 : 𝑥𝐴 𝐵𝐴 ∧ ∀ 𝑤 𝑥𝐴 𝐵 𝑤 ( 𝐹𝑤 ) / 𝑥 𝐵 ∧ ∀ 𝑤 𝑥𝐴 𝐵𝑣𝐴 ( 𝑤 𝑣 / 𝑥 𝐵 → ¬ 𝑣 𝑅 ( 𝐹𝑤 ) ) ) ↔ ( 𝐹 : 𝑥𝐴 𝐵𝐴 ∧ ∀ 𝑡 𝑥𝐴 𝐵 𝑡 ( 𝐹𝑡 ) / 𝑥 𝐵 ∧ ∀ 𝑡 𝑥𝐴 𝐵𝑠𝐴 ( 𝑡 𝑠 / 𝑥 𝐵 → ¬ 𝑠 𝑅 ( 𝐹𝑡 ) ) ) )
55 2 54 sylib ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ) → ( 𝐹 : 𝑥𝐴 𝐵𝐴 ∧ ∀ 𝑡 𝑥𝐴 𝐵 𝑡 ( 𝐹𝑡 ) / 𝑥 𝐵 ∧ ∀ 𝑡 𝑥𝐴 𝐵𝑠𝐴 ( 𝑡 𝑠 / 𝑥 𝐵 → ¬ 𝑠 𝑅 ( 𝐹𝑡 ) ) ) )