Step |
Hyp |
Ref |
Expression |
1 |
|
weiunlem2.1 |
⊢ 𝐹 = ( 𝑤 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↦ ( ℩ 𝑢 ∈ { 𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵 } ∀ 𝑣 ∈ { 𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵 } ¬ 𝑣 𝑅 𝑢 ) ) |
2 |
1
|
weiunlem1 |
⊢ ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) → ( 𝐹 : ∪ 𝑥 ∈ 𝐴 𝐵 ⟶ 𝐴 ∧ ∀ 𝑤 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 𝑤 ∈ ⦋ ( 𝐹 ‘ 𝑤 ) / 𝑥 ⦌ 𝐵 ∧ ∀ 𝑤 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∀ 𝑣 ∈ 𝐴 ( 𝑤 ∈ ⦋ 𝑣 / 𝑥 ⦌ 𝐵 → ¬ 𝑣 𝑅 ( 𝐹 ‘ 𝑤 ) ) ) ) |
3 |
|
biid |
⊢ ( 𝐹 : ∪ 𝑥 ∈ 𝐴 𝐵 ⟶ 𝐴 ↔ 𝐹 : ∪ 𝑥 ∈ 𝐴 𝐵 ⟶ 𝐴 ) |
4 |
|
nfv |
⊢ Ⅎ 𝑡 𝑤 ∈ ⦋ ( 𝐹 ‘ 𝑤 ) / 𝑥 ⦌ 𝐵 |
5 |
|
nfmpt1 |
⊢ Ⅎ 𝑤 ( 𝑤 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↦ ( ℩ 𝑢 ∈ { 𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵 } ∀ 𝑣 ∈ { 𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵 } ¬ 𝑣 𝑅 𝑢 ) ) |
6 |
1 5
|
nfcxfr |
⊢ Ⅎ 𝑤 𝐹 |
7 |
|
nfcv |
⊢ Ⅎ 𝑤 𝑡 |
8 |
6 7
|
nffv |
⊢ Ⅎ 𝑤 ( 𝐹 ‘ 𝑡 ) |
9 |
|
nfcv |
⊢ Ⅎ 𝑤 𝐵 |
10 |
8 9
|
nfcsbw |
⊢ Ⅎ 𝑤 ⦋ ( 𝐹 ‘ 𝑡 ) / 𝑥 ⦌ 𝐵 |
11 |
10
|
nfcri |
⊢ Ⅎ 𝑤 𝑡 ∈ ⦋ ( 𝐹 ‘ 𝑡 ) / 𝑥 ⦌ 𝐵 |
12 |
|
id |
⊢ ( 𝑤 = 𝑡 → 𝑤 = 𝑡 ) |
13 |
|
fveq2 |
⊢ ( 𝑤 = 𝑡 → ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑡 ) ) |
14 |
13
|
csbeq1d |
⊢ ( 𝑤 = 𝑡 → ⦋ ( 𝐹 ‘ 𝑤 ) / 𝑥 ⦌ 𝐵 = ⦋ ( 𝐹 ‘ 𝑡 ) / 𝑥 ⦌ 𝐵 ) |
15 |
12 14
|
eleq12d |
⊢ ( 𝑤 = 𝑡 → ( 𝑤 ∈ ⦋ ( 𝐹 ‘ 𝑤 ) / 𝑥 ⦌ 𝐵 ↔ 𝑡 ∈ ⦋ ( 𝐹 ‘ 𝑡 ) / 𝑥 ⦌ 𝐵 ) ) |
16 |
4 11 15
|
cbvralw |
⊢ ( ∀ 𝑤 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 𝑤 ∈ ⦋ ( 𝐹 ‘ 𝑤 ) / 𝑥 ⦌ 𝐵 ↔ ∀ 𝑡 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 𝑡 ∈ ⦋ ( 𝐹 ‘ 𝑡 ) / 𝑥 ⦌ 𝐵 ) |
17 |
|
nfv |
⊢ Ⅎ 𝑡 ∀ 𝑣 ∈ 𝐴 ( 𝑤 ∈ ⦋ 𝑣 / 𝑥 ⦌ 𝐵 → ¬ 𝑣 𝑅 ( 𝐹 ‘ 𝑤 ) ) |
18 |
|
nfcv |
⊢ Ⅎ 𝑤 𝐴 |
19 |
|
nfv |
⊢ Ⅎ 𝑤 𝑡 ∈ ⦋ 𝑠 / 𝑥 ⦌ 𝐵 |
20 |
|
nfcv |
⊢ Ⅎ 𝑤 𝑠 |
21 |
|
nfcv |
⊢ Ⅎ 𝑤 𝑅 |
22 |
20 21 8
|
nfbr |
⊢ Ⅎ 𝑤 𝑠 𝑅 ( 𝐹 ‘ 𝑡 ) |
23 |
22
|
nfn |
⊢ Ⅎ 𝑤 ¬ 𝑠 𝑅 ( 𝐹 ‘ 𝑡 ) |
24 |
19 23
|
nfim |
⊢ Ⅎ 𝑤 ( 𝑡 ∈ ⦋ 𝑠 / 𝑥 ⦌ 𝐵 → ¬ 𝑠 𝑅 ( 𝐹 ‘ 𝑡 ) ) |
25 |
18 24
|
nfralw |
⊢ Ⅎ 𝑤 ∀ 𝑠 ∈ 𝐴 ( 𝑡 ∈ ⦋ 𝑠 / 𝑥 ⦌ 𝐵 → ¬ 𝑠 𝑅 ( 𝐹 ‘ 𝑡 ) ) |
26 |
|
nfv |
⊢ Ⅎ 𝑠 ( 𝑤 ∈ ⦋ 𝑣 / 𝑥 ⦌ 𝐵 → ¬ 𝑣 𝑅 ( 𝐹 ‘ 𝑤 ) ) |
27 |
|
nfv |
⊢ Ⅎ 𝑣 𝑤 ∈ ⦋ 𝑠 / 𝑥 ⦌ 𝐵 |
28 |
|
nfcv |
⊢ Ⅎ 𝑣 𝑠 |
29 |
|
nfcv |
⊢ Ⅎ 𝑣 𝑅 |
30 |
|
nfcv |
⊢ Ⅎ 𝑣 ∪ 𝑥 ∈ 𝐴 𝐵 |
31 |
|
nfra1 |
⊢ Ⅎ 𝑣 ∀ 𝑣 ∈ { 𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵 } ¬ 𝑣 𝑅 𝑢 |
32 |
|
nfcv |
⊢ Ⅎ 𝑣 { 𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵 } |
33 |
31 32
|
nfriota |
⊢ Ⅎ 𝑣 ( ℩ 𝑢 ∈ { 𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵 } ∀ 𝑣 ∈ { 𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵 } ¬ 𝑣 𝑅 𝑢 ) |
34 |
30 33
|
nfmpt |
⊢ Ⅎ 𝑣 ( 𝑤 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↦ ( ℩ 𝑢 ∈ { 𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵 } ∀ 𝑣 ∈ { 𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵 } ¬ 𝑣 𝑅 𝑢 ) ) |
35 |
1 34
|
nfcxfr |
⊢ Ⅎ 𝑣 𝐹 |
36 |
|
nfcv |
⊢ Ⅎ 𝑣 𝑤 |
37 |
35 36
|
nffv |
⊢ Ⅎ 𝑣 ( 𝐹 ‘ 𝑤 ) |
38 |
28 29 37
|
nfbr |
⊢ Ⅎ 𝑣 𝑠 𝑅 ( 𝐹 ‘ 𝑤 ) |
39 |
38
|
nfn |
⊢ Ⅎ 𝑣 ¬ 𝑠 𝑅 ( 𝐹 ‘ 𝑤 ) |
40 |
27 39
|
nfim |
⊢ Ⅎ 𝑣 ( 𝑤 ∈ ⦋ 𝑠 / 𝑥 ⦌ 𝐵 → ¬ 𝑠 𝑅 ( 𝐹 ‘ 𝑤 ) ) |
41 |
|
csbeq1 |
⊢ ( 𝑣 = 𝑠 → ⦋ 𝑣 / 𝑥 ⦌ 𝐵 = ⦋ 𝑠 / 𝑥 ⦌ 𝐵 ) |
42 |
41
|
eleq2d |
⊢ ( 𝑣 = 𝑠 → ( 𝑤 ∈ ⦋ 𝑣 / 𝑥 ⦌ 𝐵 ↔ 𝑤 ∈ ⦋ 𝑠 / 𝑥 ⦌ 𝐵 ) ) |
43 |
|
breq1 |
⊢ ( 𝑣 = 𝑠 → ( 𝑣 𝑅 ( 𝐹 ‘ 𝑤 ) ↔ 𝑠 𝑅 ( 𝐹 ‘ 𝑤 ) ) ) |
44 |
43
|
notbid |
⊢ ( 𝑣 = 𝑠 → ( ¬ 𝑣 𝑅 ( 𝐹 ‘ 𝑤 ) ↔ ¬ 𝑠 𝑅 ( 𝐹 ‘ 𝑤 ) ) ) |
45 |
42 44
|
imbi12d |
⊢ ( 𝑣 = 𝑠 → ( ( 𝑤 ∈ ⦋ 𝑣 / 𝑥 ⦌ 𝐵 → ¬ 𝑣 𝑅 ( 𝐹 ‘ 𝑤 ) ) ↔ ( 𝑤 ∈ ⦋ 𝑠 / 𝑥 ⦌ 𝐵 → ¬ 𝑠 𝑅 ( 𝐹 ‘ 𝑤 ) ) ) ) |
46 |
26 40 45
|
cbvralw |
⊢ ( ∀ 𝑣 ∈ 𝐴 ( 𝑤 ∈ ⦋ 𝑣 / 𝑥 ⦌ 𝐵 → ¬ 𝑣 𝑅 ( 𝐹 ‘ 𝑤 ) ) ↔ ∀ 𝑠 ∈ 𝐴 ( 𝑤 ∈ ⦋ 𝑠 / 𝑥 ⦌ 𝐵 → ¬ 𝑠 𝑅 ( 𝐹 ‘ 𝑤 ) ) ) |
47 |
|
eleq1w |
⊢ ( 𝑤 = 𝑡 → ( 𝑤 ∈ ⦋ 𝑠 / 𝑥 ⦌ 𝐵 ↔ 𝑡 ∈ ⦋ 𝑠 / 𝑥 ⦌ 𝐵 ) ) |
48 |
13
|
breq2d |
⊢ ( 𝑤 = 𝑡 → ( 𝑠 𝑅 ( 𝐹 ‘ 𝑤 ) ↔ 𝑠 𝑅 ( 𝐹 ‘ 𝑡 ) ) ) |
49 |
48
|
notbid |
⊢ ( 𝑤 = 𝑡 → ( ¬ 𝑠 𝑅 ( 𝐹 ‘ 𝑤 ) ↔ ¬ 𝑠 𝑅 ( 𝐹 ‘ 𝑡 ) ) ) |
50 |
47 49
|
imbi12d |
⊢ ( 𝑤 = 𝑡 → ( ( 𝑤 ∈ ⦋ 𝑠 / 𝑥 ⦌ 𝐵 → ¬ 𝑠 𝑅 ( 𝐹 ‘ 𝑤 ) ) ↔ ( 𝑡 ∈ ⦋ 𝑠 / 𝑥 ⦌ 𝐵 → ¬ 𝑠 𝑅 ( 𝐹 ‘ 𝑡 ) ) ) ) |
51 |
50
|
ralbidv |
⊢ ( 𝑤 = 𝑡 → ( ∀ 𝑠 ∈ 𝐴 ( 𝑤 ∈ ⦋ 𝑠 / 𝑥 ⦌ 𝐵 → ¬ 𝑠 𝑅 ( 𝐹 ‘ 𝑤 ) ) ↔ ∀ 𝑠 ∈ 𝐴 ( 𝑡 ∈ ⦋ 𝑠 / 𝑥 ⦌ 𝐵 → ¬ 𝑠 𝑅 ( 𝐹 ‘ 𝑡 ) ) ) ) |
52 |
46 51
|
bitrid |
⊢ ( 𝑤 = 𝑡 → ( ∀ 𝑣 ∈ 𝐴 ( 𝑤 ∈ ⦋ 𝑣 / 𝑥 ⦌ 𝐵 → ¬ 𝑣 𝑅 ( 𝐹 ‘ 𝑤 ) ) ↔ ∀ 𝑠 ∈ 𝐴 ( 𝑡 ∈ ⦋ 𝑠 / 𝑥 ⦌ 𝐵 → ¬ 𝑠 𝑅 ( 𝐹 ‘ 𝑡 ) ) ) ) |
53 |
17 25 52
|
cbvralw |
⊢ ( ∀ 𝑤 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∀ 𝑣 ∈ 𝐴 ( 𝑤 ∈ ⦋ 𝑣 / 𝑥 ⦌ 𝐵 → ¬ 𝑣 𝑅 ( 𝐹 ‘ 𝑤 ) ) ↔ ∀ 𝑡 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∀ 𝑠 ∈ 𝐴 ( 𝑡 ∈ ⦋ 𝑠 / 𝑥 ⦌ 𝐵 → ¬ 𝑠 𝑅 ( 𝐹 ‘ 𝑡 ) ) ) |
54 |
3 16 53
|
3anbi123i |
⊢ ( ( 𝐹 : ∪ 𝑥 ∈ 𝐴 𝐵 ⟶ 𝐴 ∧ ∀ 𝑤 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 𝑤 ∈ ⦋ ( 𝐹 ‘ 𝑤 ) / 𝑥 ⦌ 𝐵 ∧ ∀ 𝑤 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∀ 𝑣 ∈ 𝐴 ( 𝑤 ∈ ⦋ 𝑣 / 𝑥 ⦌ 𝐵 → ¬ 𝑣 𝑅 ( 𝐹 ‘ 𝑤 ) ) ) ↔ ( 𝐹 : ∪ 𝑥 ∈ 𝐴 𝐵 ⟶ 𝐴 ∧ ∀ 𝑡 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 𝑡 ∈ ⦋ ( 𝐹 ‘ 𝑡 ) / 𝑥 ⦌ 𝐵 ∧ ∀ 𝑡 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∀ 𝑠 ∈ 𝐴 ( 𝑡 ∈ ⦋ 𝑠 / 𝑥 ⦌ 𝐵 → ¬ 𝑠 𝑅 ( 𝐹 ‘ 𝑡 ) ) ) ) |
55 |
2 54
|
sylib |
⊢ ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) → ( 𝐹 : ∪ 𝑥 ∈ 𝐴 𝐵 ⟶ 𝐴 ∧ ∀ 𝑡 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 𝑡 ∈ ⦋ ( 𝐹 ‘ 𝑡 ) / 𝑥 ⦌ 𝐵 ∧ ∀ 𝑡 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∀ 𝑠 ∈ 𝐴 ( 𝑡 ∈ ⦋ 𝑠 / 𝑥 ⦌ 𝐵 → ¬ 𝑠 𝑅 ( 𝐹 ‘ 𝑡 ) ) ) ) |