Metamath Proof Explorer


Theorem weiunso

Description: A strict ordering on an indexed union can be constructed from a well-ordering on its index set and a collection of strict orderings on its members. (Contributed by Matthew House, 23-Aug-2025)

Ref Expression
Hypotheses weiunso.1 𝐹 = ( 𝑤 𝑥𝐴 𝐵 ↦ ( 𝑢 ∈ { 𝑥𝐴𝑤𝐵 } ∀ 𝑣 ∈ { 𝑥𝐴𝑤𝐵 } ¬ 𝑣 𝑅 𝑢 ) )
weiunso.2 𝑇 = { ⟨ 𝑦 , 𝑧 ⟩ ∣ ( ( 𝑦 𝑥𝐴 𝐵𝑧 𝑥𝐴 𝐵 ) ∧ ( ( 𝐹𝑦 ) 𝑅 ( 𝐹𝑧 ) ∨ ( ( 𝐹𝑦 ) = ( 𝐹𝑧 ) ∧ 𝑦 ( 𝐹𝑦 ) / 𝑥 𝑆 𝑧 ) ) ) }
Assertion weiunso ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ∧ ∀ 𝑥𝐴 𝑆 Or 𝐵 ) → 𝑇 Or 𝑥𝐴 𝐵 )

Proof

Step Hyp Ref Expression
1 weiunso.1 𝐹 = ( 𝑤 𝑥𝐴 𝐵 ↦ ( 𝑢 ∈ { 𝑥𝐴𝑤𝐵 } ∀ 𝑣 ∈ { 𝑥𝐴𝑤𝐵 } ¬ 𝑣 𝑅 𝑢 ) )
2 weiunso.2 𝑇 = { ⟨ 𝑦 , 𝑧 ⟩ ∣ ( ( 𝑦 𝑥𝐴 𝐵𝑧 𝑥𝐴 𝐵 ) ∧ ( ( 𝐹𝑦 ) 𝑅 ( 𝐹𝑧 ) ∨ ( ( 𝐹𝑦 ) = ( 𝐹𝑧 ) ∧ 𝑦 ( 𝐹𝑦 ) / 𝑥 𝑆 𝑧 ) ) ) }
3 sopo ( 𝑆 Or 𝐵𝑆 Po 𝐵 )
4 3 ralimi ( ∀ 𝑥𝐴 𝑆 Or 𝐵 → ∀ 𝑥𝐴 𝑆 Po 𝐵 )
5 1 2 weiunpo ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ∧ ∀ 𝑥𝐴 𝑆 Po 𝐵 ) → 𝑇 Po 𝑥𝐴 𝐵 )
6 4 5 syl3an3 ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ∧ ∀ 𝑥𝐴 𝑆 Or 𝐵 ) → 𝑇 Po 𝑥𝐴 𝐵 )
7 simplrl ( ( ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ∧ ∀ 𝑥𝐴 𝑆 Or 𝐵 ) ∧ ( 𝑞 𝑥𝐴 𝐵𝑟 𝑥𝐴 𝐵 ) ) ∧ ( 𝐹𝑞 ) 𝑅 ( 𝐹𝑟 ) ) → 𝑞 𝑥𝐴 𝐵 )
8 simplrr ( ( ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ∧ ∀ 𝑥𝐴 𝑆 Or 𝐵 ) ∧ ( 𝑞 𝑥𝐴 𝐵𝑟 𝑥𝐴 𝐵 ) ) ∧ ( 𝐹𝑞 ) 𝑅 ( 𝐹𝑟 ) ) → 𝑟 𝑥𝐴 𝐵 )
9 animorrl ( ( ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ∧ ∀ 𝑥𝐴 𝑆 Or 𝐵 ) ∧ ( 𝑞 𝑥𝐴 𝐵𝑟 𝑥𝐴 𝐵 ) ) ∧ ( 𝐹𝑞 ) 𝑅 ( 𝐹𝑟 ) ) → ( ( 𝐹𝑞 ) 𝑅 ( 𝐹𝑟 ) ∨ ( ( 𝐹𝑞 ) = ( 𝐹𝑟 ) ∧ 𝑞 ( 𝐹𝑞 ) / 𝑥 𝑆 𝑟 ) ) )
10 simpl ( ( 𝑦 = 𝑞𝑧 = 𝑟 ) → 𝑦 = 𝑞 )
11 10 fveq2d ( ( 𝑦 = 𝑞𝑧 = 𝑟 ) → ( 𝐹𝑦 ) = ( 𝐹𝑞 ) )
12 simpr ( ( 𝑦 = 𝑞𝑧 = 𝑟 ) → 𝑧 = 𝑟 )
13 12 fveq2d ( ( 𝑦 = 𝑞𝑧 = 𝑟 ) → ( 𝐹𝑧 ) = ( 𝐹𝑟 ) )
14 11 13 breq12d ( ( 𝑦 = 𝑞𝑧 = 𝑟 ) → ( ( 𝐹𝑦 ) 𝑅 ( 𝐹𝑧 ) ↔ ( 𝐹𝑞 ) 𝑅 ( 𝐹𝑟 ) ) )
15 11 13 eqeq12d ( ( 𝑦 = 𝑞𝑧 = 𝑟 ) → ( ( 𝐹𝑦 ) = ( 𝐹𝑧 ) ↔ ( 𝐹𝑞 ) = ( 𝐹𝑟 ) ) )
16 11 csbeq1d ( ( 𝑦 = 𝑞𝑧 = 𝑟 ) → ( 𝐹𝑦 ) / 𝑥 𝑆 = ( 𝐹𝑞 ) / 𝑥 𝑆 )
17 10 16 12 breq123d ( ( 𝑦 = 𝑞𝑧 = 𝑟 ) → ( 𝑦 ( 𝐹𝑦 ) / 𝑥 𝑆 𝑧𝑞 ( 𝐹𝑞 ) / 𝑥 𝑆 𝑟 ) )
18 15 17 anbi12d ( ( 𝑦 = 𝑞𝑧 = 𝑟 ) → ( ( ( 𝐹𝑦 ) = ( 𝐹𝑧 ) ∧ 𝑦 ( 𝐹𝑦 ) / 𝑥 𝑆 𝑧 ) ↔ ( ( 𝐹𝑞 ) = ( 𝐹𝑟 ) ∧ 𝑞 ( 𝐹𝑞 ) / 𝑥 𝑆 𝑟 ) ) )
19 14 18 orbi12d ( ( 𝑦 = 𝑞𝑧 = 𝑟 ) → ( ( ( 𝐹𝑦 ) 𝑅 ( 𝐹𝑧 ) ∨ ( ( 𝐹𝑦 ) = ( 𝐹𝑧 ) ∧ 𝑦 ( 𝐹𝑦 ) / 𝑥 𝑆 𝑧 ) ) ↔ ( ( 𝐹𝑞 ) 𝑅 ( 𝐹𝑟 ) ∨ ( ( 𝐹𝑞 ) = ( 𝐹𝑟 ) ∧ 𝑞 ( 𝐹𝑞 ) / 𝑥 𝑆 𝑟 ) ) ) )
20 19 2 brab2a ( 𝑞 𝑇 𝑟 ↔ ( ( 𝑞 𝑥𝐴 𝐵𝑟 𝑥𝐴 𝐵 ) ∧ ( ( 𝐹𝑞 ) 𝑅 ( 𝐹𝑟 ) ∨ ( ( 𝐹𝑞 ) = ( 𝐹𝑟 ) ∧ 𝑞 ( 𝐹𝑞 ) / 𝑥 𝑆 𝑟 ) ) ) )
21 7 8 9 20 syl21anbrc ( ( ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ∧ ∀ 𝑥𝐴 𝑆 Or 𝐵 ) ∧ ( 𝑞 𝑥𝐴 𝐵𝑟 𝑥𝐴 𝐵 ) ) ∧ ( 𝐹𝑞 ) 𝑅 ( 𝐹𝑟 ) ) → 𝑞 𝑇 𝑟 )
22 21 3mix1d ( ( ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ∧ ∀ 𝑥𝐴 𝑆 Or 𝐵 ) ∧ ( 𝑞 𝑥𝐴 𝐵𝑟 𝑥𝐴 𝐵 ) ) ∧ ( 𝐹𝑞 ) 𝑅 ( 𝐹𝑟 ) ) → ( 𝑞 𝑇 𝑟𝑞 = 𝑟𝑟 𝑇 𝑞 ) )
23 csbeq1 ( 𝑠 = ( 𝐹𝑞 ) → 𝑠 / 𝑥 𝑆 = ( 𝐹𝑞 ) / 𝑥 𝑆 )
24 soeq1 ( 𝑠 / 𝑥 𝑆 = ( 𝐹𝑞 ) / 𝑥 𝑆 → ( 𝑠 / 𝑥 𝑆 Or 𝑠 / 𝑥 𝐵 ( 𝐹𝑞 ) / 𝑥 𝑆 Or 𝑠 / 𝑥 𝐵 ) )
25 23 24 syl ( 𝑠 = ( 𝐹𝑞 ) → ( 𝑠 / 𝑥 𝑆 Or 𝑠 / 𝑥 𝐵 ( 𝐹𝑞 ) / 𝑥 𝑆 Or 𝑠 / 𝑥 𝐵 ) )
26 csbeq1 ( 𝑠 = ( 𝐹𝑞 ) → 𝑠 / 𝑥 𝐵 = ( 𝐹𝑞 ) / 𝑥 𝐵 )
27 soeq2 ( 𝑠 / 𝑥 𝐵 = ( 𝐹𝑞 ) / 𝑥 𝐵 → ( ( 𝐹𝑞 ) / 𝑥 𝑆 Or 𝑠 / 𝑥 𝐵 ( 𝐹𝑞 ) / 𝑥 𝑆 Or ( 𝐹𝑞 ) / 𝑥 𝐵 ) )
28 26 27 syl ( 𝑠 = ( 𝐹𝑞 ) → ( ( 𝐹𝑞 ) / 𝑥 𝑆 Or 𝑠 / 𝑥 𝐵 ( 𝐹𝑞 ) / 𝑥 𝑆 Or ( 𝐹𝑞 ) / 𝑥 𝐵 ) )
29 25 28 bitrd ( 𝑠 = ( 𝐹𝑞 ) → ( 𝑠 / 𝑥 𝑆 Or 𝑠 / 𝑥 𝐵 ( 𝐹𝑞 ) / 𝑥 𝑆 Or ( 𝐹𝑞 ) / 𝑥 𝐵 ) )
30 simpll3 ( ( ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ∧ ∀ 𝑥𝐴 𝑆 Or 𝐵 ) ∧ ( 𝑞 𝑥𝐴 𝐵𝑟 𝑥𝐴 𝐵 ) ) ∧ ( 𝐹𝑞 ) = ( 𝐹𝑟 ) ) → ∀ 𝑥𝐴 𝑆 Or 𝐵 )
31 nfv 𝑠 𝑆 Or 𝐵
32 nfcsb1v 𝑥 𝑠 / 𝑥 𝑆
33 nfcsb1v 𝑥 𝑠 / 𝑥 𝐵
34 32 33 nfso 𝑥 𝑠 / 𝑥 𝑆 Or 𝑠 / 𝑥 𝐵
35 csbeq1a ( 𝑥 = 𝑠𝑆 = 𝑠 / 𝑥 𝑆 )
36 soeq1 ( 𝑆 = 𝑠 / 𝑥 𝑆 → ( 𝑆 Or 𝐵 𝑠 / 𝑥 𝑆 Or 𝐵 ) )
37 35 36 syl ( 𝑥 = 𝑠 → ( 𝑆 Or 𝐵 𝑠 / 𝑥 𝑆 Or 𝐵 ) )
38 csbeq1a ( 𝑥 = 𝑠𝐵 = 𝑠 / 𝑥 𝐵 )
39 soeq2 ( 𝐵 = 𝑠 / 𝑥 𝐵 → ( 𝑠 / 𝑥 𝑆 Or 𝐵 𝑠 / 𝑥 𝑆 Or 𝑠 / 𝑥 𝐵 ) )
40 38 39 syl ( 𝑥 = 𝑠 → ( 𝑠 / 𝑥 𝑆 Or 𝐵 𝑠 / 𝑥 𝑆 Or 𝑠 / 𝑥 𝐵 ) )
41 37 40 bitrd ( 𝑥 = 𝑠 → ( 𝑆 Or 𝐵 𝑠 / 𝑥 𝑆 Or 𝑠 / 𝑥 𝐵 ) )
42 31 34 41 cbvralw ( ∀ 𝑥𝐴 𝑆 Or 𝐵 ↔ ∀ 𝑠𝐴 𝑠 / 𝑥 𝑆 Or 𝑠 / 𝑥 𝐵 )
43 30 42 sylib ( ( ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ∧ ∀ 𝑥𝐴 𝑆 Or 𝐵 ) ∧ ( 𝑞 𝑥𝐴 𝐵𝑟 𝑥𝐴 𝐵 ) ) ∧ ( 𝐹𝑞 ) = ( 𝐹𝑟 ) ) → ∀ 𝑠𝐴 𝑠 / 𝑥 𝑆 Or 𝑠 / 𝑥 𝐵 )
44 simpl1 ( ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ∧ ∀ 𝑥𝐴 𝑆 Or 𝐵 ) ∧ ( 𝑞 𝑥𝐴 𝐵𝑟 𝑥𝐴 𝐵 ) ) → 𝑅 We 𝐴 )
45 simpl2 ( ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ∧ ∀ 𝑥𝐴 𝑆 Or 𝐵 ) ∧ ( 𝑞 𝑥𝐴 𝐵𝑟 𝑥𝐴 𝐵 ) ) → 𝑅 Se 𝐴 )
46 1 weiunlem2 ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ) → ( 𝐹 : 𝑥𝐴 𝐵𝐴 ∧ ∀ 𝑡 𝑥𝐴 𝐵 𝑡 ( 𝐹𝑡 ) / 𝑥 𝐵 ∧ ∀ 𝑡 𝑥𝐴 𝐵𝑠𝐴 ( 𝑡 𝑠 / 𝑥 𝐵 → ¬ 𝑠 𝑅 ( 𝐹𝑡 ) ) ) )
47 44 45 46 syl2anc ( ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ∧ ∀ 𝑥𝐴 𝑆 Or 𝐵 ) ∧ ( 𝑞 𝑥𝐴 𝐵𝑟 𝑥𝐴 𝐵 ) ) → ( 𝐹 : 𝑥𝐴 𝐵𝐴 ∧ ∀ 𝑡 𝑥𝐴 𝐵 𝑡 ( 𝐹𝑡 ) / 𝑥 𝐵 ∧ ∀ 𝑡 𝑥𝐴 𝐵𝑠𝐴 ( 𝑡 𝑠 / 𝑥 𝐵 → ¬ 𝑠 𝑅 ( 𝐹𝑡 ) ) ) )
48 47 simp1d ( ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ∧ ∀ 𝑥𝐴 𝑆 Or 𝐵 ) ∧ ( 𝑞 𝑥𝐴 𝐵𝑟 𝑥𝐴 𝐵 ) ) → 𝐹 : 𝑥𝐴 𝐵𝐴 )
49 simprl ( ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ∧ ∀ 𝑥𝐴 𝑆 Or 𝐵 ) ∧ ( 𝑞 𝑥𝐴 𝐵𝑟 𝑥𝐴 𝐵 ) ) → 𝑞 𝑥𝐴 𝐵 )
50 48 49 ffvelcdmd ( ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ∧ ∀ 𝑥𝐴 𝑆 Or 𝐵 ) ∧ ( 𝑞 𝑥𝐴 𝐵𝑟 𝑥𝐴 𝐵 ) ) → ( 𝐹𝑞 ) ∈ 𝐴 )
51 50 adantr ( ( ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ∧ ∀ 𝑥𝐴 𝑆 Or 𝐵 ) ∧ ( 𝑞 𝑥𝐴 𝐵𝑟 𝑥𝐴 𝐵 ) ) ∧ ( 𝐹𝑞 ) = ( 𝐹𝑟 ) ) → ( 𝐹𝑞 ) ∈ 𝐴 )
52 29 43 51 rspcdva ( ( ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ∧ ∀ 𝑥𝐴 𝑆 Or 𝐵 ) ∧ ( 𝑞 𝑥𝐴 𝐵𝑟 𝑥𝐴 𝐵 ) ) ∧ ( 𝐹𝑞 ) = ( 𝐹𝑟 ) ) → ( 𝐹𝑞 ) / 𝑥 𝑆 Or ( 𝐹𝑞 ) / 𝑥 𝐵 )
53 id ( 𝑡 = 𝑞𝑡 = 𝑞 )
54 fveq2 ( 𝑡 = 𝑞 → ( 𝐹𝑡 ) = ( 𝐹𝑞 ) )
55 54 csbeq1d ( 𝑡 = 𝑞 ( 𝐹𝑡 ) / 𝑥 𝐵 = ( 𝐹𝑞 ) / 𝑥 𝐵 )
56 53 55 eleq12d ( 𝑡 = 𝑞 → ( 𝑡 ( 𝐹𝑡 ) / 𝑥 𝐵𝑞 ( 𝐹𝑞 ) / 𝑥 𝐵 ) )
57 47 simp2d ( ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ∧ ∀ 𝑥𝐴 𝑆 Or 𝐵 ) ∧ ( 𝑞 𝑥𝐴 𝐵𝑟 𝑥𝐴 𝐵 ) ) → ∀ 𝑡 𝑥𝐴 𝐵 𝑡 ( 𝐹𝑡 ) / 𝑥 𝐵 )
58 57 adantr ( ( ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ∧ ∀ 𝑥𝐴 𝑆 Or 𝐵 ) ∧ ( 𝑞 𝑥𝐴 𝐵𝑟 𝑥𝐴 𝐵 ) ) ∧ ( 𝐹𝑞 ) = ( 𝐹𝑟 ) ) → ∀ 𝑡 𝑥𝐴 𝐵 𝑡 ( 𝐹𝑡 ) / 𝑥 𝐵 )
59 simplrl ( ( ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ∧ ∀ 𝑥𝐴 𝑆 Or 𝐵 ) ∧ ( 𝑞 𝑥𝐴 𝐵𝑟 𝑥𝐴 𝐵 ) ) ∧ ( 𝐹𝑞 ) = ( 𝐹𝑟 ) ) → 𝑞 𝑥𝐴 𝐵 )
60 56 58 59 rspcdva ( ( ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ∧ ∀ 𝑥𝐴 𝑆 Or 𝐵 ) ∧ ( 𝑞 𝑥𝐴 𝐵𝑟 𝑥𝐴 𝐵 ) ) ∧ ( 𝐹𝑞 ) = ( 𝐹𝑟 ) ) → 𝑞 ( 𝐹𝑞 ) / 𝑥 𝐵 )
61 id ( 𝑡 = 𝑟𝑡 = 𝑟 )
62 fveq2 ( 𝑡 = 𝑟 → ( 𝐹𝑡 ) = ( 𝐹𝑟 ) )
63 62 csbeq1d ( 𝑡 = 𝑟 ( 𝐹𝑡 ) / 𝑥 𝐵 = ( 𝐹𝑟 ) / 𝑥 𝐵 )
64 61 63 eleq12d ( 𝑡 = 𝑟 → ( 𝑡 ( 𝐹𝑡 ) / 𝑥 𝐵𝑟 ( 𝐹𝑟 ) / 𝑥 𝐵 ) )
65 simplrr ( ( ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ∧ ∀ 𝑥𝐴 𝑆 Or 𝐵 ) ∧ ( 𝑞 𝑥𝐴 𝐵𝑟 𝑥𝐴 𝐵 ) ) ∧ ( 𝐹𝑞 ) = ( 𝐹𝑟 ) ) → 𝑟 𝑥𝐴 𝐵 )
66 64 58 65 rspcdva ( ( ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ∧ ∀ 𝑥𝐴 𝑆 Or 𝐵 ) ∧ ( 𝑞 𝑥𝐴 𝐵𝑟 𝑥𝐴 𝐵 ) ) ∧ ( 𝐹𝑞 ) = ( 𝐹𝑟 ) ) → 𝑟 ( 𝐹𝑟 ) / 𝑥 𝐵 )
67 simpr ( ( ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ∧ ∀ 𝑥𝐴 𝑆 Or 𝐵 ) ∧ ( 𝑞 𝑥𝐴 𝐵𝑟 𝑥𝐴 𝐵 ) ) ∧ ( 𝐹𝑞 ) = ( 𝐹𝑟 ) ) → ( 𝐹𝑞 ) = ( 𝐹𝑟 ) )
68 67 csbeq1d ( ( ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ∧ ∀ 𝑥𝐴 𝑆 Or 𝐵 ) ∧ ( 𝑞 𝑥𝐴 𝐵𝑟 𝑥𝐴 𝐵 ) ) ∧ ( 𝐹𝑞 ) = ( 𝐹𝑟 ) ) → ( 𝐹𝑞 ) / 𝑥 𝐵 = ( 𝐹𝑟 ) / 𝑥 𝐵 )
69 66 68 eleqtrrd ( ( ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ∧ ∀ 𝑥𝐴 𝑆 Or 𝐵 ) ∧ ( 𝑞 𝑥𝐴 𝐵𝑟 𝑥𝐴 𝐵 ) ) ∧ ( 𝐹𝑞 ) = ( 𝐹𝑟 ) ) → 𝑟 ( 𝐹𝑞 ) / 𝑥 𝐵 )
70 solin ( ( ( 𝐹𝑞 ) / 𝑥 𝑆 Or ( 𝐹𝑞 ) / 𝑥 𝐵 ∧ ( 𝑞 ( 𝐹𝑞 ) / 𝑥 𝐵𝑟 ( 𝐹𝑞 ) / 𝑥 𝐵 ) ) → ( 𝑞 ( 𝐹𝑞 ) / 𝑥 𝑆 𝑟𝑞 = 𝑟𝑟 ( 𝐹𝑞 ) / 𝑥 𝑆 𝑞 ) )
71 52 60 69 70 syl12anc ( ( ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ∧ ∀ 𝑥𝐴 𝑆 Or 𝐵 ) ∧ ( 𝑞 𝑥𝐴 𝐵𝑟 𝑥𝐴 𝐵 ) ) ∧ ( 𝐹𝑞 ) = ( 𝐹𝑟 ) ) → ( 𝑞 ( 𝐹𝑞 ) / 𝑥 𝑆 𝑟𝑞 = 𝑟𝑟 ( 𝐹𝑞 ) / 𝑥 𝑆 𝑞 ) )
72 simpllr ( ( ( ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ∧ ∀ 𝑥𝐴 𝑆 Or 𝐵 ) ∧ ( 𝑞 𝑥𝐴 𝐵𝑟 𝑥𝐴 𝐵 ) ) ∧ ( 𝐹𝑞 ) = ( 𝐹𝑟 ) ) ∧ 𝑞 ( 𝐹𝑞 ) / 𝑥 𝑆 𝑟 ) → ( 𝑞 𝑥𝐴 𝐵𝑟 𝑥𝐴 𝐵 ) )
73 67 anim1i ( ( ( ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ∧ ∀ 𝑥𝐴 𝑆 Or 𝐵 ) ∧ ( 𝑞 𝑥𝐴 𝐵𝑟 𝑥𝐴 𝐵 ) ) ∧ ( 𝐹𝑞 ) = ( 𝐹𝑟 ) ) ∧ 𝑞 ( 𝐹𝑞 ) / 𝑥 𝑆 𝑟 ) → ( ( 𝐹𝑞 ) = ( 𝐹𝑟 ) ∧ 𝑞 ( 𝐹𝑞 ) / 𝑥 𝑆 𝑟 ) )
74 73 olcd ( ( ( ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ∧ ∀ 𝑥𝐴 𝑆 Or 𝐵 ) ∧ ( 𝑞 𝑥𝐴 𝐵𝑟 𝑥𝐴 𝐵 ) ) ∧ ( 𝐹𝑞 ) = ( 𝐹𝑟 ) ) ∧ 𝑞 ( 𝐹𝑞 ) / 𝑥 𝑆 𝑟 ) → ( ( 𝐹𝑞 ) 𝑅 ( 𝐹𝑟 ) ∨ ( ( 𝐹𝑞 ) = ( 𝐹𝑟 ) ∧ 𝑞 ( 𝐹𝑞 ) / 𝑥 𝑆 𝑟 ) ) )
75 72 74 20 sylanbrc ( ( ( ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ∧ ∀ 𝑥𝐴 𝑆 Or 𝐵 ) ∧ ( 𝑞 𝑥𝐴 𝐵𝑟 𝑥𝐴 𝐵 ) ) ∧ ( 𝐹𝑞 ) = ( 𝐹𝑟 ) ) ∧ 𝑞 ( 𝐹𝑞 ) / 𝑥 𝑆 𝑟 ) → 𝑞 𝑇 𝑟 )
76 75 ex ( ( ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ∧ ∀ 𝑥𝐴 𝑆 Or 𝐵 ) ∧ ( 𝑞 𝑥𝐴 𝐵𝑟 𝑥𝐴 𝐵 ) ) ∧ ( 𝐹𝑞 ) = ( 𝐹𝑟 ) ) → ( 𝑞 ( 𝐹𝑞 ) / 𝑥 𝑆 𝑟𝑞 𝑇 𝑟 ) )
77 idd ( ( ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ∧ ∀ 𝑥𝐴 𝑆 Or 𝐵 ) ∧ ( 𝑞 𝑥𝐴 𝐵𝑟 𝑥𝐴 𝐵 ) ) ∧ ( 𝐹𝑞 ) = ( 𝐹𝑟 ) ) → ( 𝑞 = 𝑟𝑞 = 𝑟 ) )
78 65 adantr ( ( ( ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ∧ ∀ 𝑥𝐴 𝑆 Or 𝐵 ) ∧ ( 𝑞 𝑥𝐴 𝐵𝑟 𝑥𝐴 𝐵 ) ) ∧ ( 𝐹𝑞 ) = ( 𝐹𝑟 ) ) ∧ 𝑟 ( 𝐹𝑞 ) / 𝑥 𝑆 𝑞 ) → 𝑟 𝑥𝐴 𝐵 )
79 59 adantr ( ( ( ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ∧ ∀ 𝑥𝐴 𝑆 Or 𝐵 ) ∧ ( 𝑞 𝑥𝐴 𝐵𝑟 𝑥𝐴 𝐵 ) ) ∧ ( 𝐹𝑞 ) = ( 𝐹𝑟 ) ) ∧ 𝑟 ( 𝐹𝑞 ) / 𝑥 𝑆 𝑞 ) → 𝑞 𝑥𝐴 𝐵 )
80 simplr ( ( ( ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ∧ ∀ 𝑥𝐴 𝑆 Or 𝐵 ) ∧ ( 𝑞 𝑥𝐴 𝐵𝑟 𝑥𝐴 𝐵 ) ) ∧ ( 𝐹𝑞 ) = ( 𝐹𝑟 ) ) ∧ 𝑟 ( 𝐹𝑞 ) / 𝑥 𝑆 𝑞 ) → ( 𝐹𝑞 ) = ( 𝐹𝑟 ) )
81 80 eqcomd ( ( ( ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ∧ ∀ 𝑥𝐴 𝑆 Or 𝐵 ) ∧ ( 𝑞 𝑥𝐴 𝐵𝑟 𝑥𝐴 𝐵 ) ) ∧ ( 𝐹𝑞 ) = ( 𝐹𝑟 ) ) ∧ 𝑟 ( 𝐹𝑞 ) / 𝑥 𝑆 𝑞 ) → ( 𝐹𝑟 ) = ( 𝐹𝑞 ) )
82 80 csbeq1d ( ( ( ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ∧ ∀ 𝑥𝐴 𝑆 Or 𝐵 ) ∧ ( 𝑞 𝑥𝐴 𝐵𝑟 𝑥𝐴 𝐵 ) ) ∧ ( 𝐹𝑞 ) = ( 𝐹𝑟 ) ) ∧ 𝑟 ( 𝐹𝑞 ) / 𝑥 𝑆 𝑞 ) → ( 𝐹𝑞 ) / 𝑥 𝑆 = ( 𝐹𝑟 ) / 𝑥 𝑆 )
83 simpr ( ( ( ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ∧ ∀ 𝑥𝐴 𝑆 Or 𝐵 ) ∧ ( 𝑞 𝑥𝐴 𝐵𝑟 𝑥𝐴 𝐵 ) ) ∧ ( 𝐹𝑞 ) = ( 𝐹𝑟 ) ) ∧ 𝑟 ( 𝐹𝑞 ) / 𝑥 𝑆 𝑞 ) → 𝑟 ( 𝐹𝑞 ) / 𝑥 𝑆 𝑞 )
84 82 83 breqdi ( ( ( ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ∧ ∀ 𝑥𝐴 𝑆 Or 𝐵 ) ∧ ( 𝑞 𝑥𝐴 𝐵𝑟 𝑥𝐴 𝐵 ) ) ∧ ( 𝐹𝑞 ) = ( 𝐹𝑟 ) ) ∧ 𝑟 ( 𝐹𝑞 ) / 𝑥 𝑆 𝑞 ) → 𝑟 ( 𝐹𝑟 ) / 𝑥 𝑆 𝑞 )
85 81 84 jca ( ( ( ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ∧ ∀ 𝑥𝐴 𝑆 Or 𝐵 ) ∧ ( 𝑞 𝑥𝐴 𝐵𝑟 𝑥𝐴 𝐵 ) ) ∧ ( 𝐹𝑞 ) = ( 𝐹𝑟 ) ) ∧ 𝑟 ( 𝐹𝑞 ) / 𝑥 𝑆 𝑞 ) → ( ( 𝐹𝑟 ) = ( 𝐹𝑞 ) ∧ 𝑟 ( 𝐹𝑟 ) / 𝑥 𝑆 𝑞 ) )
86 85 olcd ( ( ( ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ∧ ∀ 𝑥𝐴 𝑆 Or 𝐵 ) ∧ ( 𝑞 𝑥𝐴 𝐵𝑟 𝑥𝐴 𝐵 ) ) ∧ ( 𝐹𝑞 ) = ( 𝐹𝑟 ) ) ∧ 𝑟 ( 𝐹𝑞 ) / 𝑥 𝑆 𝑞 ) → ( ( 𝐹𝑟 ) 𝑅 ( 𝐹𝑞 ) ∨ ( ( 𝐹𝑟 ) = ( 𝐹𝑞 ) ∧ 𝑟 ( 𝐹𝑟 ) / 𝑥 𝑆 𝑞 ) ) )
87 simpl ( ( 𝑦 = 𝑟𝑧 = 𝑞 ) → 𝑦 = 𝑟 )
88 87 fveq2d ( ( 𝑦 = 𝑟𝑧 = 𝑞 ) → ( 𝐹𝑦 ) = ( 𝐹𝑟 ) )
89 simpr ( ( 𝑦 = 𝑟𝑧 = 𝑞 ) → 𝑧 = 𝑞 )
90 89 fveq2d ( ( 𝑦 = 𝑟𝑧 = 𝑞 ) → ( 𝐹𝑧 ) = ( 𝐹𝑞 ) )
91 88 90 breq12d ( ( 𝑦 = 𝑟𝑧 = 𝑞 ) → ( ( 𝐹𝑦 ) 𝑅 ( 𝐹𝑧 ) ↔ ( 𝐹𝑟 ) 𝑅 ( 𝐹𝑞 ) ) )
92 88 90 eqeq12d ( ( 𝑦 = 𝑟𝑧 = 𝑞 ) → ( ( 𝐹𝑦 ) = ( 𝐹𝑧 ) ↔ ( 𝐹𝑟 ) = ( 𝐹𝑞 ) ) )
93 88 csbeq1d ( ( 𝑦 = 𝑟𝑧 = 𝑞 ) → ( 𝐹𝑦 ) / 𝑥 𝑆 = ( 𝐹𝑟 ) / 𝑥 𝑆 )
94 87 93 89 breq123d ( ( 𝑦 = 𝑟𝑧 = 𝑞 ) → ( 𝑦 ( 𝐹𝑦 ) / 𝑥 𝑆 𝑧𝑟 ( 𝐹𝑟 ) / 𝑥 𝑆 𝑞 ) )
95 92 94 anbi12d ( ( 𝑦 = 𝑟𝑧 = 𝑞 ) → ( ( ( 𝐹𝑦 ) = ( 𝐹𝑧 ) ∧ 𝑦 ( 𝐹𝑦 ) / 𝑥 𝑆 𝑧 ) ↔ ( ( 𝐹𝑟 ) = ( 𝐹𝑞 ) ∧ 𝑟 ( 𝐹𝑟 ) / 𝑥 𝑆 𝑞 ) ) )
96 91 95 orbi12d ( ( 𝑦 = 𝑟𝑧 = 𝑞 ) → ( ( ( 𝐹𝑦 ) 𝑅 ( 𝐹𝑧 ) ∨ ( ( 𝐹𝑦 ) = ( 𝐹𝑧 ) ∧ 𝑦 ( 𝐹𝑦 ) / 𝑥 𝑆 𝑧 ) ) ↔ ( ( 𝐹𝑟 ) 𝑅 ( 𝐹𝑞 ) ∨ ( ( 𝐹𝑟 ) = ( 𝐹𝑞 ) ∧ 𝑟 ( 𝐹𝑟 ) / 𝑥 𝑆 𝑞 ) ) ) )
97 96 2 brab2a ( 𝑟 𝑇 𝑞 ↔ ( ( 𝑟 𝑥𝐴 𝐵𝑞 𝑥𝐴 𝐵 ) ∧ ( ( 𝐹𝑟 ) 𝑅 ( 𝐹𝑞 ) ∨ ( ( 𝐹𝑟 ) = ( 𝐹𝑞 ) ∧ 𝑟 ( 𝐹𝑟 ) / 𝑥 𝑆 𝑞 ) ) ) )
98 78 79 86 97 syl21anbrc ( ( ( ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ∧ ∀ 𝑥𝐴 𝑆 Or 𝐵 ) ∧ ( 𝑞 𝑥𝐴 𝐵𝑟 𝑥𝐴 𝐵 ) ) ∧ ( 𝐹𝑞 ) = ( 𝐹𝑟 ) ) ∧ 𝑟 ( 𝐹𝑞 ) / 𝑥 𝑆 𝑞 ) → 𝑟 𝑇 𝑞 )
99 98 ex ( ( ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ∧ ∀ 𝑥𝐴 𝑆 Or 𝐵 ) ∧ ( 𝑞 𝑥𝐴 𝐵𝑟 𝑥𝐴 𝐵 ) ) ∧ ( 𝐹𝑞 ) = ( 𝐹𝑟 ) ) → ( 𝑟 ( 𝐹𝑞 ) / 𝑥 𝑆 𝑞𝑟 𝑇 𝑞 ) )
100 76 77 99 3orim123d ( ( ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ∧ ∀ 𝑥𝐴 𝑆 Or 𝐵 ) ∧ ( 𝑞 𝑥𝐴 𝐵𝑟 𝑥𝐴 𝐵 ) ) ∧ ( 𝐹𝑞 ) = ( 𝐹𝑟 ) ) → ( ( 𝑞 ( 𝐹𝑞 ) / 𝑥 𝑆 𝑟𝑞 = 𝑟𝑟 ( 𝐹𝑞 ) / 𝑥 𝑆 𝑞 ) → ( 𝑞 𝑇 𝑟𝑞 = 𝑟𝑟 𝑇 𝑞 ) ) )
101 71 100 mpd ( ( ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ∧ ∀ 𝑥𝐴 𝑆 Or 𝐵 ) ∧ ( 𝑞 𝑥𝐴 𝐵𝑟 𝑥𝐴 𝐵 ) ) ∧ ( 𝐹𝑞 ) = ( 𝐹𝑟 ) ) → ( 𝑞 𝑇 𝑟𝑞 = 𝑟𝑟 𝑇 𝑞 ) )
102 simplrr ( ( ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ∧ ∀ 𝑥𝐴 𝑆 Or 𝐵 ) ∧ ( 𝑞 𝑥𝐴 𝐵𝑟 𝑥𝐴 𝐵 ) ) ∧ ( 𝐹𝑟 ) 𝑅 ( 𝐹𝑞 ) ) → 𝑟 𝑥𝐴 𝐵 )
103 simplrl ( ( ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ∧ ∀ 𝑥𝐴 𝑆 Or 𝐵 ) ∧ ( 𝑞 𝑥𝐴 𝐵𝑟 𝑥𝐴 𝐵 ) ) ∧ ( 𝐹𝑟 ) 𝑅 ( 𝐹𝑞 ) ) → 𝑞 𝑥𝐴 𝐵 )
104 animorrl ( ( ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ∧ ∀ 𝑥𝐴 𝑆 Or 𝐵 ) ∧ ( 𝑞 𝑥𝐴 𝐵𝑟 𝑥𝐴 𝐵 ) ) ∧ ( 𝐹𝑟 ) 𝑅 ( 𝐹𝑞 ) ) → ( ( 𝐹𝑟 ) 𝑅 ( 𝐹𝑞 ) ∨ ( ( 𝐹𝑟 ) = ( 𝐹𝑞 ) ∧ 𝑟 ( 𝐹𝑟 ) / 𝑥 𝑆 𝑞 ) ) )
105 102 103 104 97 syl21anbrc ( ( ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ∧ ∀ 𝑥𝐴 𝑆 Or 𝐵 ) ∧ ( 𝑞 𝑥𝐴 𝐵𝑟 𝑥𝐴 𝐵 ) ) ∧ ( 𝐹𝑟 ) 𝑅 ( 𝐹𝑞 ) ) → 𝑟 𝑇 𝑞 )
106 105 3mix3d ( ( ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ∧ ∀ 𝑥𝐴 𝑆 Or 𝐵 ) ∧ ( 𝑞 𝑥𝐴 𝐵𝑟 𝑥𝐴 𝐵 ) ) ∧ ( 𝐹𝑟 ) 𝑅 ( 𝐹𝑞 ) ) → ( 𝑞 𝑇 𝑟𝑞 = 𝑟𝑟 𝑇 𝑞 ) )
107 weso ( 𝑅 We 𝐴𝑅 Or 𝐴 )
108 44 107 syl ( ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ∧ ∀ 𝑥𝐴 𝑆 Or 𝐵 ) ∧ ( 𝑞 𝑥𝐴 𝐵𝑟 𝑥𝐴 𝐵 ) ) → 𝑅 Or 𝐴 )
109 simprr ( ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ∧ ∀ 𝑥𝐴 𝑆 Or 𝐵 ) ∧ ( 𝑞 𝑥𝐴 𝐵𝑟 𝑥𝐴 𝐵 ) ) → 𝑟 𝑥𝐴 𝐵 )
110 48 109 ffvelcdmd ( ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ∧ ∀ 𝑥𝐴 𝑆 Or 𝐵 ) ∧ ( 𝑞 𝑥𝐴 𝐵𝑟 𝑥𝐴 𝐵 ) ) → ( 𝐹𝑟 ) ∈ 𝐴 )
111 solin ( ( 𝑅 Or 𝐴 ∧ ( ( 𝐹𝑞 ) ∈ 𝐴 ∧ ( 𝐹𝑟 ) ∈ 𝐴 ) ) → ( ( 𝐹𝑞 ) 𝑅 ( 𝐹𝑟 ) ∨ ( 𝐹𝑞 ) = ( 𝐹𝑟 ) ∨ ( 𝐹𝑟 ) 𝑅 ( 𝐹𝑞 ) ) )
112 108 50 110 111 syl12anc ( ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ∧ ∀ 𝑥𝐴 𝑆 Or 𝐵 ) ∧ ( 𝑞 𝑥𝐴 𝐵𝑟 𝑥𝐴 𝐵 ) ) → ( ( 𝐹𝑞 ) 𝑅 ( 𝐹𝑟 ) ∨ ( 𝐹𝑞 ) = ( 𝐹𝑟 ) ∨ ( 𝐹𝑟 ) 𝑅 ( 𝐹𝑞 ) ) )
113 22 101 106 112 mpjao3dan ( ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ∧ ∀ 𝑥𝐴 𝑆 Or 𝐵 ) ∧ ( 𝑞 𝑥𝐴 𝐵𝑟 𝑥𝐴 𝐵 ) ) → ( 𝑞 𝑇 𝑟𝑞 = 𝑟𝑟 𝑇 𝑞 ) )
114 6 113 issod ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ∧ ∀ 𝑥𝐴 𝑆 Or 𝐵 ) → 𝑇 Or 𝑥𝐴 𝐵 )