Step |
Hyp |
Ref |
Expression |
1 |
|
weiunso.1 |
⊢ 𝐹 = ( 𝑤 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↦ ( ℩ 𝑢 ∈ { 𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵 } ∀ 𝑣 ∈ { 𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵 } ¬ 𝑣 𝑅 𝑢 ) ) |
2 |
|
weiunso.2 |
⊢ 𝑇 = { 〈 𝑦 , 𝑧 〉 ∣ ( ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ∧ ( ( 𝐹 ‘ 𝑦 ) 𝑅 ( 𝐹 ‘ 𝑧 ) ∨ ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) ∧ 𝑦 ⦋ ( 𝐹 ‘ 𝑦 ) / 𝑥 ⦌ 𝑆 𝑧 ) ) ) } |
3 |
|
sopo |
⊢ ( 𝑆 Or 𝐵 → 𝑆 Po 𝐵 ) |
4 |
3
|
ralimi |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝑆 Or 𝐵 → ∀ 𝑥 ∈ 𝐴 𝑆 Po 𝐵 ) |
5 |
1 2
|
weiunpo |
⊢ ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 Po 𝐵 ) → 𝑇 Po ∪ 𝑥 ∈ 𝐴 𝐵 ) |
6 |
4 5
|
syl3an3 |
⊢ ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 Or 𝐵 ) → 𝑇 Po ∪ 𝑥 ∈ 𝐴 𝐵 ) |
7 |
|
simplrl |
⊢ ( ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 Or 𝐵 ) ∧ ( 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) ∧ ( 𝐹 ‘ 𝑞 ) 𝑅 ( 𝐹 ‘ 𝑟 ) ) → 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
8 |
|
simplrr |
⊢ ( ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 Or 𝐵 ) ∧ ( 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) ∧ ( 𝐹 ‘ 𝑞 ) 𝑅 ( 𝐹 ‘ 𝑟 ) ) → 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
9 |
|
animorrl |
⊢ ( ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 Or 𝐵 ) ∧ ( 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) ∧ ( 𝐹 ‘ 𝑞 ) 𝑅 ( 𝐹 ‘ 𝑟 ) ) → ( ( 𝐹 ‘ 𝑞 ) 𝑅 ( 𝐹 ‘ 𝑟 ) ∨ ( ( 𝐹 ‘ 𝑞 ) = ( 𝐹 ‘ 𝑟 ) ∧ 𝑞 ⦋ ( 𝐹 ‘ 𝑞 ) / 𝑥 ⦌ 𝑆 𝑟 ) ) ) |
10 |
|
simpl |
⊢ ( ( 𝑦 = 𝑞 ∧ 𝑧 = 𝑟 ) → 𝑦 = 𝑞 ) |
11 |
10
|
fveq2d |
⊢ ( ( 𝑦 = 𝑞 ∧ 𝑧 = 𝑟 ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑞 ) ) |
12 |
|
simpr |
⊢ ( ( 𝑦 = 𝑞 ∧ 𝑧 = 𝑟 ) → 𝑧 = 𝑟 ) |
13 |
12
|
fveq2d |
⊢ ( ( 𝑦 = 𝑞 ∧ 𝑧 = 𝑟 ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑟 ) ) |
14 |
11 13
|
breq12d |
⊢ ( ( 𝑦 = 𝑞 ∧ 𝑧 = 𝑟 ) → ( ( 𝐹 ‘ 𝑦 ) 𝑅 ( 𝐹 ‘ 𝑧 ) ↔ ( 𝐹 ‘ 𝑞 ) 𝑅 ( 𝐹 ‘ 𝑟 ) ) ) |
15 |
11 13
|
eqeq12d |
⊢ ( ( 𝑦 = 𝑞 ∧ 𝑧 = 𝑟 ) → ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) ↔ ( 𝐹 ‘ 𝑞 ) = ( 𝐹 ‘ 𝑟 ) ) ) |
16 |
11
|
csbeq1d |
⊢ ( ( 𝑦 = 𝑞 ∧ 𝑧 = 𝑟 ) → ⦋ ( 𝐹 ‘ 𝑦 ) / 𝑥 ⦌ 𝑆 = ⦋ ( 𝐹 ‘ 𝑞 ) / 𝑥 ⦌ 𝑆 ) |
17 |
10 16 12
|
breq123d |
⊢ ( ( 𝑦 = 𝑞 ∧ 𝑧 = 𝑟 ) → ( 𝑦 ⦋ ( 𝐹 ‘ 𝑦 ) / 𝑥 ⦌ 𝑆 𝑧 ↔ 𝑞 ⦋ ( 𝐹 ‘ 𝑞 ) / 𝑥 ⦌ 𝑆 𝑟 ) ) |
18 |
15 17
|
anbi12d |
⊢ ( ( 𝑦 = 𝑞 ∧ 𝑧 = 𝑟 ) → ( ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) ∧ 𝑦 ⦋ ( 𝐹 ‘ 𝑦 ) / 𝑥 ⦌ 𝑆 𝑧 ) ↔ ( ( 𝐹 ‘ 𝑞 ) = ( 𝐹 ‘ 𝑟 ) ∧ 𝑞 ⦋ ( 𝐹 ‘ 𝑞 ) / 𝑥 ⦌ 𝑆 𝑟 ) ) ) |
19 |
14 18
|
orbi12d |
⊢ ( ( 𝑦 = 𝑞 ∧ 𝑧 = 𝑟 ) → ( ( ( 𝐹 ‘ 𝑦 ) 𝑅 ( 𝐹 ‘ 𝑧 ) ∨ ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) ∧ 𝑦 ⦋ ( 𝐹 ‘ 𝑦 ) / 𝑥 ⦌ 𝑆 𝑧 ) ) ↔ ( ( 𝐹 ‘ 𝑞 ) 𝑅 ( 𝐹 ‘ 𝑟 ) ∨ ( ( 𝐹 ‘ 𝑞 ) = ( 𝐹 ‘ 𝑟 ) ∧ 𝑞 ⦋ ( 𝐹 ‘ 𝑞 ) / 𝑥 ⦌ 𝑆 𝑟 ) ) ) ) |
20 |
19 2
|
brab2a |
⊢ ( 𝑞 𝑇 𝑟 ↔ ( ( 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ∧ ( ( 𝐹 ‘ 𝑞 ) 𝑅 ( 𝐹 ‘ 𝑟 ) ∨ ( ( 𝐹 ‘ 𝑞 ) = ( 𝐹 ‘ 𝑟 ) ∧ 𝑞 ⦋ ( 𝐹 ‘ 𝑞 ) / 𝑥 ⦌ 𝑆 𝑟 ) ) ) ) |
21 |
7 8 9 20
|
syl21anbrc |
⊢ ( ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 Or 𝐵 ) ∧ ( 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) ∧ ( 𝐹 ‘ 𝑞 ) 𝑅 ( 𝐹 ‘ 𝑟 ) ) → 𝑞 𝑇 𝑟 ) |
22 |
21
|
3mix1d |
⊢ ( ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 Or 𝐵 ) ∧ ( 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) ∧ ( 𝐹 ‘ 𝑞 ) 𝑅 ( 𝐹 ‘ 𝑟 ) ) → ( 𝑞 𝑇 𝑟 ∨ 𝑞 = 𝑟 ∨ 𝑟 𝑇 𝑞 ) ) |
23 |
|
csbeq1 |
⊢ ( 𝑠 = ( 𝐹 ‘ 𝑞 ) → ⦋ 𝑠 / 𝑥 ⦌ 𝑆 = ⦋ ( 𝐹 ‘ 𝑞 ) / 𝑥 ⦌ 𝑆 ) |
24 |
|
soeq1 |
⊢ ( ⦋ 𝑠 / 𝑥 ⦌ 𝑆 = ⦋ ( 𝐹 ‘ 𝑞 ) / 𝑥 ⦌ 𝑆 → ( ⦋ 𝑠 / 𝑥 ⦌ 𝑆 Or ⦋ 𝑠 / 𝑥 ⦌ 𝐵 ↔ ⦋ ( 𝐹 ‘ 𝑞 ) / 𝑥 ⦌ 𝑆 Or ⦋ 𝑠 / 𝑥 ⦌ 𝐵 ) ) |
25 |
23 24
|
syl |
⊢ ( 𝑠 = ( 𝐹 ‘ 𝑞 ) → ( ⦋ 𝑠 / 𝑥 ⦌ 𝑆 Or ⦋ 𝑠 / 𝑥 ⦌ 𝐵 ↔ ⦋ ( 𝐹 ‘ 𝑞 ) / 𝑥 ⦌ 𝑆 Or ⦋ 𝑠 / 𝑥 ⦌ 𝐵 ) ) |
26 |
|
csbeq1 |
⊢ ( 𝑠 = ( 𝐹 ‘ 𝑞 ) → ⦋ 𝑠 / 𝑥 ⦌ 𝐵 = ⦋ ( 𝐹 ‘ 𝑞 ) / 𝑥 ⦌ 𝐵 ) |
27 |
|
soeq2 |
⊢ ( ⦋ 𝑠 / 𝑥 ⦌ 𝐵 = ⦋ ( 𝐹 ‘ 𝑞 ) / 𝑥 ⦌ 𝐵 → ( ⦋ ( 𝐹 ‘ 𝑞 ) / 𝑥 ⦌ 𝑆 Or ⦋ 𝑠 / 𝑥 ⦌ 𝐵 ↔ ⦋ ( 𝐹 ‘ 𝑞 ) / 𝑥 ⦌ 𝑆 Or ⦋ ( 𝐹 ‘ 𝑞 ) / 𝑥 ⦌ 𝐵 ) ) |
28 |
26 27
|
syl |
⊢ ( 𝑠 = ( 𝐹 ‘ 𝑞 ) → ( ⦋ ( 𝐹 ‘ 𝑞 ) / 𝑥 ⦌ 𝑆 Or ⦋ 𝑠 / 𝑥 ⦌ 𝐵 ↔ ⦋ ( 𝐹 ‘ 𝑞 ) / 𝑥 ⦌ 𝑆 Or ⦋ ( 𝐹 ‘ 𝑞 ) / 𝑥 ⦌ 𝐵 ) ) |
29 |
25 28
|
bitrd |
⊢ ( 𝑠 = ( 𝐹 ‘ 𝑞 ) → ( ⦋ 𝑠 / 𝑥 ⦌ 𝑆 Or ⦋ 𝑠 / 𝑥 ⦌ 𝐵 ↔ ⦋ ( 𝐹 ‘ 𝑞 ) / 𝑥 ⦌ 𝑆 Or ⦋ ( 𝐹 ‘ 𝑞 ) / 𝑥 ⦌ 𝐵 ) ) |
30 |
|
simpll3 |
⊢ ( ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 Or 𝐵 ) ∧ ( 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) ∧ ( 𝐹 ‘ 𝑞 ) = ( 𝐹 ‘ 𝑟 ) ) → ∀ 𝑥 ∈ 𝐴 𝑆 Or 𝐵 ) |
31 |
|
nfv |
⊢ Ⅎ 𝑠 𝑆 Or 𝐵 |
32 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑠 / 𝑥 ⦌ 𝑆 |
33 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑠 / 𝑥 ⦌ 𝐵 |
34 |
32 33
|
nfso |
⊢ Ⅎ 𝑥 ⦋ 𝑠 / 𝑥 ⦌ 𝑆 Or ⦋ 𝑠 / 𝑥 ⦌ 𝐵 |
35 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑠 → 𝑆 = ⦋ 𝑠 / 𝑥 ⦌ 𝑆 ) |
36 |
|
soeq1 |
⊢ ( 𝑆 = ⦋ 𝑠 / 𝑥 ⦌ 𝑆 → ( 𝑆 Or 𝐵 ↔ ⦋ 𝑠 / 𝑥 ⦌ 𝑆 Or 𝐵 ) ) |
37 |
35 36
|
syl |
⊢ ( 𝑥 = 𝑠 → ( 𝑆 Or 𝐵 ↔ ⦋ 𝑠 / 𝑥 ⦌ 𝑆 Or 𝐵 ) ) |
38 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑠 → 𝐵 = ⦋ 𝑠 / 𝑥 ⦌ 𝐵 ) |
39 |
|
soeq2 |
⊢ ( 𝐵 = ⦋ 𝑠 / 𝑥 ⦌ 𝐵 → ( ⦋ 𝑠 / 𝑥 ⦌ 𝑆 Or 𝐵 ↔ ⦋ 𝑠 / 𝑥 ⦌ 𝑆 Or ⦋ 𝑠 / 𝑥 ⦌ 𝐵 ) ) |
40 |
38 39
|
syl |
⊢ ( 𝑥 = 𝑠 → ( ⦋ 𝑠 / 𝑥 ⦌ 𝑆 Or 𝐵 ↔ ⦋ 𝑠 / 𝑥 ⦌ 𝑆 Or ⦋ 𝑠 / 𝑥 ⦌ 𝐵 ) ) |
41 |
37 40
|
bitrd |
⊢ ( 𝑥 = 𝑠 → ( 𝑆 Or 𝐵 ↔ ⦋ 𝑠 / 𝑥 ⦌ 𝑆 Or ⦋ 𝑠 / 𝑥 ⦌ 𝐵 ) ) |
42 |
31 34 41
|
cbvralw |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝑆 Or 𝐵 ↔ ∀ 𝑠 ∈ 𝐴 ⦋ 𝑠 / 𝑥 ⦌ 𝑆 Or ⦋ 𝑠 / 𝑥 ⦌ 𝐵 ) |
43 |
30 42
|
sylib |
⊢ ( ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 Or 𝐵 ) ∧ ( 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) ∧ ( 𝐹 ‘ 𝑞 ) = ( 𝐹 ‘ 𝑟 ) ) → ∀ 𝑠 ∈ 𝐴 ⦋ 𝑠 / 𝑥 ⦌ 𝑆 Or ⦋ 𝑠 / 𝑥 ⦌ 𝐵 ) |
44 |
|
simpl1 |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 Or 𝐵 ) ∧ ( 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) → 𝑅 We 𝐴 ) |
45 |
|
simpl2 |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 Or 𝐵 ) ∧ ( 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) → 𝑅 Se 𝐴 ) |
46 |
1
|
weiunlem2 |
⊢ ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) → ( 𝐹 : ∪ 𝑥 ∈ 𝐴 𝐵 ⟶ 𝐴 ∧ ∀ 𝑡 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 𝑡 ∈ ⦋ ( 𝐹 ‘ 𝑡 ) / 𝑥 ⦌ 𝐵 ∧ ∀ 𝑡 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∀ 𝑠 ∈ 𝐴 ( 𝑡 ∈ ⦋ 𝑠 / 𝑥 ⦌ 𝐵 → ¬ 𝑠 𝑅 ( 𝐹 ‘ 𝑡 ) ) ) ) |
47 |
44 45 46
|
syl2anc |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 Or 𝐵 ) ∧ ( 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) → ( 𝐹 : ∪ 𝑥 ∈ 𝐴 𝐵 ⟶ 𝐴 ∧ ∀ 𝑡 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 𝑡 ∈ ⦋ ( 𝐹 ‘ 𝑡 ) / 𝑥 ⦌ 𝐵 ∧ ∀ 𝑡 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∀ 𝑠 ∈ 𝐴 ( 𝑡 ∈ ⦋ 𝑠 / 𝑥 ⦌ 𝐵 → ¬ 𝑠 𝑅 ( 𝐹 ‘ 𝑡 ) ) ) ) |
48 |
47
|
simp1d |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 Or 𝐵 ) ∧ ( 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) → 𝐹 : ∪ 𝑥 ∈ 𝐴 𝐵 ⟶ 𝐴 ) |
49 |
|
simprl |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 Or 𝐵 ) ∧ ( 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) → 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
50 |
48 49
|
ffvelcdmd |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 Or 𝐵 ) ∧ ( 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) → ( 𝐹 ‘ 𝑞 ) ∈ 𝐴 ) |
51 |
50
|
adantr |
⊢ ( ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 Or 𝐵 ) ∧ ( 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) ∧ ( 𝐹 ‘ 𝑞 ) = ( 𝐹 ‘ 𝑟 ) ) → ( 𝐹 ‘ 𝑞 ) ∈ 𝐴 ) |
52 |
29 43 51
|
rspcdva |
⊢ ( ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 Or 𝐵 ) ∧ ( 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) ∧ ( 𝐹 ‘ 𝑞 ) = ( 𝐹 ‘ 𝑟 ) ) → ⦋ ( 𝐹 ‘ 𝑞 ) / 𝑥 ⦌ 𝑆 Or ⦋ ( 𝐹 ‘ 𝑞 ) / 𝑥 ⦌ 𝐵 ) |
53 |
|
id |
⊢ ( 𝑡 = 𝑞 → 𝑡 = 𝑞 ) |
54 |
|
fveq2 |
⊢ ( 𝑡 = 𝑞 → ( 𝐹 ‘ 𝑡 ) = ( 𝐹 ‘ 𝑞 ) ) |
55 |
54
|
csbeq1d |
⊢ ( 𝑡 = 𝑞 → ⦋ ( 𝐹 ‘ 𝑡 ) / 𝑥 ⦌ 𝐵 = ⦋ ( 𝐹 ‘ 𝑞 ) / 𝑥 ⦌ 𝐵 ) |
56 |
53 55
|
eleq12d |
⊢ ( 𝑡 = 𝑞 → ( 𝑡 ∈ ⦋ ( 𝐹 ‘ 𝑡 ) / 𝑥 ⦌ 𝐵 ↔ 𝑞 ∈ ⦋ ( 𝐹 ‘ 𝑞 ) / 𝑥 ⦌ 𝐵 ) ) |
57 |
47
|
simp2d |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 Or 𝐵 ) ∧ ( 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) → ∀ 𝑡 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 𝑡 ∈ ⦋ ( 𝐹 ‘ 𝑡 ) / 𝑥 ⦌ 𝐵 ) |
58 |
57
|
adantr |
⊢ ( ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 Or 𝐵 ) ∧ ( 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) ∧ ( 𝐹 ‘ 𝑞 ) = ( 𝐹 ‘ 𝑟 ) ) → ∀ 𝑡 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 𝑡 ∈ ⦋ ( 𝐹 ‘ 𝑡 ) / 𝑥 ⦌ 𝐵 ) |
59 |
|
simplrl |
⊢ ( ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 Or 𝐵 ) ∧ ( 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) ∧ ( 𝐹 ‘ 𝑞 ) = ( 𝐹 ‘ 𝑟 ) ) → 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
60 |
56 58 59
|
rspcdva |
⊢ ( ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 Or 𝐵 ) ∧ ( 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) ∧ ( 𝐹 ‘ 𝑞 ) = ( 𝐹 ‘ 𝑟 ) ) → 𝑞 ∈ ⦋ ( 𝐹 ‘ 𝑞 ) / 𝑥 ⦌ 𝐵 ) |
61 |
|
id |
⊢ ( 𝑡 = 𝑟 → 𝑡 = 𝑟 ) |
62 |
|
fveq2 |
⊢ ( 𝑡 = 𝑟 → ( 𝐹 ‘ 𝑡 ) = ( 𝐹 ‘ 𝑟 ) ) |
63 |
62
|
csbeq1d |
⊢ ( 𝑡 = 𝑟 → ⦋ ( 𝐹 ‘ 𝑡 ) / 𝑥 ⦌ 𝐵 = ⦋ ( 𝐹 ‘ 𝑟 ) / 𝑥 ⦌ 𝐵 ) |
64 |
61 63
|
eleq12d |
⊢ ( 𝑡 = 𝑟 → ( 𝑡 ∈ ⦋ ( 𝐹 ‘ 𝑡 ) / 𝑥 ⦌ 𝐵 ↔ 𝑟 ∈ ⦋ ( 𝐹 ‘ 𝑟 ) / 𝑥 ⦌ 𝐵 ) ) |
65 |
|
simplrr |
⊢ ( ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 Or 𝐵 ) ∧ ( 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) ∧ ( 𝐹 ‘ 𝑞 ) = ( 𝐹 ‘ 𝑟 ) ) → 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
66 |
64 58 65
|
rspcdva |
⊢ ( ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 Or 𝐵 ) ∧ ( 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) ∧ ( 𝐹 ‘ 𝑞 ) = ( 𝐹 ‘ 𝑟 ) ) → 𝑟 ∈ ⦋ ( 𝐹 ‘ 𝑟 ) / 𝑥 ⦌ 𝐵 ) |
67 |
|
simpr |
⊢ ( ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 Or 𝐵 ) ∧ ( 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) ∧ ( 𝐹 ‘ 𝑞 ) = ( 𝐹 ‘ 𝑟 ) ) → ( 𝐹 ‘ 𝑞 ) = ( 𝐹 ‘ 𝑟 ) ) |
68 |
67
|
csbeq1d |
⊢ ( ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 Or 𝐵 ) ∧ ( 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) ∧ ( 𝐹 ‘ 𝑞 ) = ( 𝐹 ‘ 𝑟 ) ) → ⦋ ( 𝐹 ‘ 𝑞 ) / 𝑥 ⦌ 𝐵 = ⦋ ( 𝐹 ‘ 𝑟 ) / 𝑥 ⦌ 𝐵 ) |
69 |
66 68
|
eleqtrrd |
⊢ ( ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 Or 𝐵 ) ∧ ( 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) ∧ ( 𝐹 ‘ 𝑞 ) = ( 𝐹 ‘ 𝑟 ) ) → 𝑟 ∈ ⦋ ( 𝐹 ‘ 𝑞 ) / 𝑥 ⦌ 𝐵 ) |
70 |
|
solin |
⊢ ( ( ⦋ ( 𝐹 ‘ 𝑞 ) / 𝑥 ⦌ 𝑆 Or ⦋ ( 𝐹 ‘ 𝑞 ) / 𝑥 ⦌ 𝐵 ∧ ( 𝑞 ∈ ⦋ ( 𝐹 ‘ 𝑞 ) / 𝑥 ⦌ 𝐵 ∧ 𝑟 ∈ ⦋ ( 𝐹 ‘ 𝑞 ) / 𝑥 ⦌ 𝐵 ) ) → ( 𝑞 ⦋ ( 𝐹 ‘ 𝑞 ) / 𝑥 ⦌ 𝑆 𝑟 ∨ 𝑞 = 𝑟 ∨ 𝑟 ⦋ ( 𝐹 ‘ 𝑞 ) / 𝑥 ⦌ 𝑆 𝑞 ) ) |
71 |
52 60 69 70
|
syl12anc |
⊢ ( ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 Or 𝐵 ) ∧ ( 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) ∧ ( 𝐹 ‘ 𝑞 ) = ( 𝐹 ‘ 𝑟 ) ) → ( 𝑞 ⦋ ( 𝐹 ‘ 𝑞 ) / 𝑥 ⦌ 𝑆 𝑟 ∨ 𝑞 = 𝑟 ∨ 𝑟 ⦋ ( 𝐹 ‘ 𝑞 ) / 𝑥 ⦌ 𝑆 𝑞 ) ) |
72 |
|
simpllr |
⊢ ( ( ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 Or 𝐵 ) ∧ ( 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) ∧ ( 𝐹 ‘ 𝑞 ) = ( 𝐹 ‘ 𝑟 ) ) ∧ 𝑞 ⦋ ( 𝐹 ‘ 𝑞 ) / 𝑥 ⦌ 𝑆 𝑟 ) → ( 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) |
73 |
67
|
anim1i |
⊢ ( ( ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 Or 𝐵 ) ∧ ( 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) ∧ ( 𝐹 ‘ 𝑞 ) = ( 𝐹 ‘ 𝑟 ) ) ∧ 𝑞 ⦋ ( 𝐹 ‘ 𝑞 ) / 𝑥 ⦌ 𝑆 𝑟 ) → ( ( 𝐹 ‘ 𝑞 ) = ( 𝐹 ‘ 𝑟 ) ∧ 𝑞 ⦋ ( 𝐹 ‘ 𝑞 ) / 𝑥 ⦌ 𝑆 𝑟 ) ) |
74 |
73
|
olcd |
⊢ ( ( ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 Or 𝐵 ) ∧ ( 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) ∧ ( 𝐹 ‘ 𝑞 ) = ( 𝐹 ‘ 𝑟 ) ) ∧ 𝑞 ⦋ ( 𝐹 ‘ 𝑞 ) / 𝑥 ⦌ 𝑆 𝑟 ) → ( ( 𝐹 ‘ 𝑞 ) 𝑅 ( 𝐹 ‘ 𝑟 ) ∨ ( ( 𝐹 ‘ 𝑞 ) = ( 𝐹 ‘ 𝑟 ) ∧ 𝑞 ⦋ ( 𝐹 ‘ 𝑞 ) / 𝑥 ⦌ 𝑆 𝑟 ) ) ) |
75 |
72 74 20
|
sylanbrc |
⊢ ( ( ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 Or 𝐵 ) ∧ ( 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) ∧ ( 𝐹 ‘ 𝑞 ) = ( 𝐹 ‘ 𝑟 ) ) ∧ 𝑞 ⦋ ( 𝐹 ‘ 𝑞 ) / 𝑥 ⦌ 𝑆 𝑟 ) → 𝑞 𝑇 𝑟 ) |
76 |
75
|
ex |
⊢ ( ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 Or 𝐵 ) ∧ ( 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) ∧ ( 𝐹 ‘ 𝑞 ) = ( 𝐹 ‘ 𝑟 ) ) → ( 𝑞 ⦋ ( 𝐹 ‘ 𝑞 ) / 𝑥 ⦌ 𝑆 𝑟 → 𝑞 𝑇 𝑟 ) ) |
77 |
|
idd |
⊢ ( ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 Or 𝐵 ) ∧ ( 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) ∧ ( 𝐹 ‘ 𝑞 ) = ( 𝐹 ‘ 𝑟 ) ) → ( 𝑞 = 𝑟 → 𝑞 = 𝑟 ) ) |
78 |
65
|
adantr |
⊢ ( ( ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 Or 𝐵 ) ∧ ( 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) ∧ ( 𝐹 ‘ 𝑞 ) = ( 𝐹 ‘ 𝑟 ) ) ∧ 𝑟 ⦋ ( 𝐹 ‘ 𝑞 ) / 𝑥 ⦌ 𝑆 𝑞 ) → 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
79 |
59
|
adantr |
⊢ ( ( ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 Or 𝐵 ) ∧ ( 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) ∧ ( 𝐹 ‘ 𝑞 ) = ( 𝐹 ‘ 𝑟 ) ) ∧ 𝑟 ⦋ ( 𝐹 ‘ 𝑞 ) / 𝑥 ⦌ 𝑆 𝑞 ) → 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
80 |
|
simplr |
⊢ ( ( ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 Or 𝐵 ) ∧ ( 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) ∧ ( 𝐹 ‘ 𝑞 ) = ( 𝐹 ‘ 𝑟 ) ) ∧ 𝑟 ⦋ ( 𝐹 ‘ 𝑞 ) / 𝑥 ⦌ 𝑆 𝑞 ) → ( 𝐹 ‘ 𝑞 ) = ( 𝐹 ‘ 𝑟 ) ) |
81 |
80
|
eqcomd |
⊢ ( ( ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 Or 𝐵 ) ∧ ( 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) ∧ ( 𝐹 ‘ 𝑞 ) = ( 𝐹 ‘ 𝑟 ) ) ∧ 𝑟 ⦋ ( 𝐹 ‘ 𝑞 ) / 𝑥 ⦌ 𝑆 𝑞 ) → ( 𝐹 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑞 ) ) |
82 |
80
|
csbeq1d |
⊢ ( ( ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 Or 𝐵 ) ∧ ( 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) ∧ ( 𝐹 ‘ 𝑞 ) = ( 𝐹 ‘ 𝑟 ) ) ∧ 𝑟 ⦋ ( 𝐹 ‘ 𝑞 ) / 𝑥 ⦌ 𝑆 𝑞 ) → ⦋ ( 𝐹 ‘ 𝑞 ) / 𝑥 ⦌ 𝑆 = ⦋ ( 𝐹 ‘ 𝑟 ) / 𝑥 ⦌ 𝑆 ) |
83 |
|
simpr |
⊢ ( ( ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 Or 𝐵 ) ∧ ( 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) ∧ ( 𝐹 ‘ 𝑞 ) = ( 𝐹 ‘ 𝑟 ) ) ∧ 𝑟 ⦋ ( 𝐹 ‘ 𝑞 ) / 𝑥 ⦌ 𝑆 𝑞 ) → 𝑟 ⦋ ( 𝐹 ‘ 𝑞 ) / 𝑥 ⦌ 𝑆 𝑞 ) |
84 |
82 83
|
breqdi |
⊢ ( ( ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 Or 𝐵 ) ∧ ( 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) ∧ ( 𝐹 ‘ 𝑞 ) = ( 𝐹 ‘ 𝑟 ) ) ∧ 𝑟 ⦋ ( 𝐹 ‘ 𝑞 ) / 𝑥 ⦌ 𝑆 𝑞 ) → 𝑟 ⦋ ( 𝐹 ‘ 𝑟 ) / 𝑥 ⦌ 𝑆 𝑞 ) |
85 |
81 84
|
jca |
⊢ ( ( ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 Or 𝐵 ) ∧ ( 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) ∧ ( 𝐹 ‘ 𝑞 ) = ( 𝐹 ‘ 𝑟 ) ) ∧ 𝑟 ⦋ ( 𝐹 ‘ 𝑞 ) / 𝑥 ⦌ 𝑆 𝑞 ) → ( ( 𝐹 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑞 ) ∧ 𝑟 ⦋ ( 𝐹 ‘ 𝑟 ) / 𝑥 ⦌ 𝑆 𝑞 ) ) |
86 |
85
|
olcd |
⊢ ( ( ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 Or 𝐵 ) ∧ ( 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) ∧ ( 𝐹 ‘ 𝑞 ) = ( 𝐹 ‘ 𝑟 ) ) ∧ 𝑟 ⦋ ( 𝐹 ‘ 𝑞 ) / 𝑥 ⦌ 𝑆 𝑞 ) → ( ( 𝐹 ‘ 𝑟 ) 𝑅 ( 𝐹 ‘ 𝑞 ) ∨ ( ( 𝐹 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑞 ) ∧ 𝑟 ⦋ ( 𝐹 ‘ 𝑟 ) / 𝑥 ⦌ 𝑆 𝑞 ) ) ) |
87 |
|
simpl |
⊢ ( ( 𝑦 = 𝑟 ∧ 𝑧 = 𝑞 ) → 𝑦 = 𝑟 ) |
88 |
87
|
fveq2d |
⊢ ( ( 𝑦 = 𝑟 ∧ 𝑧 = 𝑞 ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑟 ) ) |
89 |
|
simpr |
⊢ ( ( 𝑦 = 𝑟 ∧ 𝑧 = 𝑞 ) → 𝑧 = 𝑞 ) |
90 |
89
|
fveq2d |
⊢ ( ( 𝑦 = 𝑟 ∧ 𝑧 = 𝑞 ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑞 ) ) |
91 |
88 90
|
breq12d |
⊢ ( ( 𝑦 = 𝑟 ∧ 𝑧 = 𝑞 ) → ( ( 𝐹 ‘ 𝑦 ) 𝑅 ( 𝐹 ‘ 𝑧 ) ↔ ( 𝐹 ‘ 𝑟 ) 𝑅 ( 𝐹 ‘ 𝑞 ) ) ) |
92 |
88 90
|
eqeq12d |
⊢ ( ( 𝑦 = 𝑟 ∧ 𝑧 = 𝑞 ) → ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) ↔ ( 𝐹 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑞 ) ) ) |
93 |
88
|
csbeq1d |
⊢ ( ( 𝑦 = 𝑟 ∧ 𝑧 = 𝑞 ) → ⦋ ( 𝐹 ‘ 𝑦 ) / 𝑥 ⦌ 𝑆 = ⦋ ( 𝐹 ‘ 𝑟 ) / 𝑥 ⦌ 𝑆 ) |
94 |
87 93 89
|
breq123d |
⊢ ( ( 𝑦 = 𝑟 ∧ 𝑧 = 𝑞 ) → ( 𝑦 ⦋ ( 𝐹 ‘ 𝑦 ) / 𝑥 ⦌ 𝑆 𝑧 ↔ 𝑟 ⦋ ( 𝐹 ‘ 𝑟 ) / 𝑥 ⦌ 𝑆 𝑞 ) ) |
95 |
92 94
|
anbi12d |
⊢ ( ( 𝑦 = 𝑟 ∧ 𝑧 = 𝑞 ) → ( ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) ∧ 𝑦 ⦋ ( 𝐹 ‘ 𝑦 ) / 𝑥 ⦌ 𝑆 𝑧 ) ↔ ( ( 𝐹 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑞 ) ∧ 𝑟 ⦋ ( 𝐹 ‘ 𝑟 ) / 𝑥 ⦌ 𝑆 𝑞 ) ) ) |
96 |
91 95
|
orbi12d |
⊢ ( ( 𝑦 = 𝑟 ∧ 𝑧 = 𝑞 ) → ( ( ( 𝐹 ‘ 𝑦 ) 𝑅 ( 𝐹 ‘ 𝑧 ) ∨ ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) ∧ 𝑦 ⦋ ( 𝐹 ‘ 𝑦 ) / 𝑥 ⦌ 𝑆 𝑧 ) ) ↔ ( ( 𝐹 ‘ 𝑟 ) 𝑅 ( 𝐹 ‘ 𝑞 ) ∨ ( ( 𝐹 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑞 ) ∧ 𝑟 ⦋ ( 𝐹 ‘ 𝑟 ) / 𝑥 ⦌ 𝑆 𝑞 ) ) ) ) |
97 |
96 2
|
brab2a |
⊢ ( 𝑟 𝑇 𝑞 ↔ ( ( 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ∧ ( ( 𝐹 ‘ 𝑟 ) 𝑅 ( 𝐹 ‘ 𝑞 ) ∨ ( ( 𝐹 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑞 ) ∧ 𝑟 ⦋ ( 𝐹 ‘ 𝑟 ) / 𝑥 ⦌ 𝑆 𝑞 ) ) ) ) |
98 |
78 79 86 97
|
syl21anbrc |
⊢ ( ( ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 Or 𝐵 ) ∧ ( 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) ∧ ( 𝐹 ‘ 𝑞 ) = ( 𝐹 ‘ 𝑟 ) ) ∧ 𝑟 ⦋ ( 𝐹 ‘ 𝑞 ) / 𝑥 ⦌ 𝑆 𝑞 ) → 𝑟 𝑇 𝑞 ) |
99 |
98
|
ex |
⊢ ( ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 Or 𝐵 ) ∧ ( 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) ∧ ( 𝐹 ‘ 𝑞 ) = ( 𝐹 ‘ 𝑟 ) ) → ( 𝑟 ⦋ ( 𝐹 ‘ 𝑞 ) / 𝑥 ⦌ 𝑆 𝑞 → 𝑟 𝑇 𝑞 ) ) |
100 |
76 77 99
|
3orim123d |
⊢ ( ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 Or 𝐵 ) ∧ ( 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) ∧ ( 𝐹 ‘ 𝑞 ) = ( 𝐹 ‘ 𝑟 ) ) → ( ( 𝑞 ⦋ ( 𝐹 ‘ 𝑞 ) / 𝑥 ⦌ 𝑆 𝑟 ∨ 𝑞 = 𝑟 ∨ 𝑟 ⦋ ( 𝐹 ‘ 𝑞 ) / 𝑥 ⦌ 𝑆 𝑞 ) → ( 𝑞 𝑇 𝑟 ∨ 𝑞 = 𝑟 ∨ 𝑟 𝑇 𝑞 ) ) ) |
101 |
71 100
|
mpd |
⊢ ( ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 Or 𝐵 ) ∧ ( 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) ∧ ( 𝐹 ‘ 𝑞 ) = ( 𝐹 ‘ 𝑟 ) ) → ( 𝑞 𝑇 𝑟 ∨ 𝑞 = 𝑟 ∨ 𝑟 𝑇 𝑞 ) ) |
102 |
|
simplrr |
⊢ ( ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 Or 𝐵 ) ∧ ( 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) ∧ ( 𝐹 ‘ 𝑟 ) 𝑅 ( 𝐹 ‘ 𝑞 ) ) → 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
103 |
|
simplrl |
⊢ ( ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 Or 𝐵 ) ∧ ( 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) ∧ ( 𝐹 ‘ 𝑟 ) 𝑅 ( 𝐹 ‘ 𝑞 ) ) → 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
104 |
|
animorrl |
⊢ ( ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 Or 𝐵 ) ∧ ( 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) ∧ ( 𝐹 ‘ 𝑟 ) 𝑅 ( 𝐹 ‘ 𝑞 ) ) → ( ( 𝐹 ‘ 𝑟 ) 𝑅 ( 𝐹 ‘ 𝑞 ) ∨ ( ( 𝐹 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑞 ) ∧ 𝑟 ⦋ ( 𝐹 ‘ 𝑟 ) / 𝑥 ⦌ 𝑆 𝑞 ) ) ) |
105 |
102 103 104 97
|
syl21anbrc |
⊢ ( ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 Or 𝐵 ) ∧ ( 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) ∧ ( 𝐹 ‘ 𝑟 ) 𝑅 ( 𝐹 ‘ 𝑞 ) ) → 𝑟 𝑇 𝑞 ) |
106 |
105
|
3mix3d |
⊢ ( ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 Or 𝐵 ) ∧ ( 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) ∧ ( 𝐹 ‘ 𝑟 ) 𝑅 ( 𝐹 ‘ 𝑞 ) ) → ( 𝑞 𝑇 𝑟 ∨ 𝑞 = 𝑟 ∨ 𝑟 𝑇 𝑞 ) ) |
107 |
|
weso |
⊢ ( 𝑅 We 𝐴 → 𝑅 Or 𝐴 ) |
108 |
44 107
|
syl |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 Or 𝐵 ) ∧ ( 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) → 𝑅 Or 𝐴 ) |
109 |
|
simprr |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 Or 𝐵 ) ∧ ( 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) → 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
110 |
48 109
|
ffvelcdmd |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 Or 𝐵 ) ∧ ( 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) → ( 𝐹 ‘ 𝑟 ) ∈ 𝐴 ) |
111 |
|
solin |
⊢ ( ( 𝑅 Or 𝐴 ∧ ( ( 𝐹 ‘ 𝑞 ) ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑟 ) ∈ 𝐴 ) ) → ( ( 𝐹 ‘ 𝑞 ) 𝑅 ( 𝐹 ‘ 𝑟 ) ∨ ( 𝐹 ‘ 𝑞 ) = ( 𝐹 ‘ 𝑟 ) ∨ ( 𝐹 ‘ 𝑟 ) 𝑅 ( 𝐹 ‘ 𝑞 ) ) ) |
112 |
108 50 110 111
|
syl12anc |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 Or 𝐵 ) ∧ ( 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) → ( ( 𝐹 ‘ 𝑞 ) 𝑅 ( 𝐹 ‘ 𝑟 ) ∨ ( 𝐹 ‘ 𝑞 ) = ( 𝐹 ‘ 𝑟 ) ∨ ( 𝐹 ‘ 𝑟 ) 𝑅 ( 𝐹 ‘ 𝑞 ) ) ) |
113 |
22 101 106 112
|
mpjao3dan |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 Or 𝐵 ) ∧ ( 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) → ( 𝑞 𝑇 𝑟 ∨ 𝑞 = 𝑟 ∨ 𝑟 𝑇 𝑞 ) ) |
114 |
6 113
|
issod |
⊢ ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 Or 𝐵 ) → 𝑇 Or ∪ 𝑥 ∈ 𝐴 𝐵 ) |