Step |
Hyp |
Ref |
Expression |
1 |
|
weiunpo.1 |
⊢ 𝐹 = ( 𝑤 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↦ ( ℩ 𝑢 ∈ { 𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵 } ∀ 𝑣 ∈ { 𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵 } ¬ 𝑣 𝑅 𝑢 ) ) |
2 |
|
weiunpo.2 |
⊢ 𝑇 = { 〈 𝑦 , 𝑧 〉 ∣ ( ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ∧ ( ( 𝐹 ‘ 𝑦 ) 𝑅 ( 𝐹 ‘ 𝑧 ) ∨ ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) ∧ 𝑦 ⦋ ( 𝐹 ‘ 𝑦 ) / 𝑥 ⦌ 𝑆 𝑧 ) ) ) } |
3 |
|
simpl1 |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 Po 𝐵 ) ∧ ( 𝑝 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) → 𝑅 We 𝐴 ) |
4 |
|
weso |
⊢ ( 𝑅 We 𝐴 → 𝑅 Or 𝐴 ) |
5 |
3 4
|
syl |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 Po 𝐵 ) ∧ ( 𝑝 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) → 𝑅 Or 𝐴 ) |
6 |
|
simpl2 |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 Po 𝐵 ) ∧ ( 𝑝 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) → 𝑅 Se 𝐴 ) |
7 |
1
|
weiunlem2 |
⊢ ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) → ( 𝐹 : ∪ 𝑥 ∈ 𝐴 𝐵 ⟶ 𝐴 ∧ ∀ 𝑡 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 𝑡 ∈ ⦋ ( 𝐹 ‘ 𝑡 ) / 𝑥 ⦌ 𝐵 ∧ ∀ 𝑡 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∀ 𝑠 ∈ 𝐴 ( 𝑡 ∈ ⦋ 𝑠 / 𝑥 ⦌ 𝐵 → ¬ 𝑠 𝑅 ( 𝐹 ‘ 𝑡 ) ) ) ) |
8 |
3 6 7
|
syl2anc |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 Po 𝐵 ) ∧ ( 𝑝 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) → ( 𝐹 : ∪ 𝑥 ∈ 𝐴 𝐵 ⟶ 𝐴 ∧ ∀ 𝑡 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 𝑡 ∈ ⦋ ( 𝐹 ‘ 𝑡 ) / 𝑥 ⦌ 𝐵 ∧ ∀ 𝑡 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∀ 𝑠 ∈ 𝐴 ( 𝑡 ∈ ⦋ 𝑠 / 𝑥 ⦌ 𝐵 → ¬ 𝑠 𝑅 ( 𝐹 ‘ 𝑡 ) ) ) ) |
9 |
8
|
simp1d |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 Po 𝐵 ) ∧ ( 𝑝 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) → 𝐹 : ∪ 𝑥 ∈ 𝐴 𝐵 ⟶ 𝐴 ) |
10 |
|
simpr1 |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 Po 𝐵 ) ∧ ( 𝑝 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) → 𝑝 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
11 |
9 10
|
ffvelcdmd |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 Po 𝐵 ) ∧ ( 𝑝 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) → ( 𝐹 ‘ 𝑝 ) ∈ 𝐴 ) |
12 |
|
sonr |
⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝐹 ‘ 𝑝 ) ∈ 𝐴 ) → ¬ ( 𝐹 ‘ 𝑝 ) 𝑅 ( 𝐹 ‘ 𝑝 ) ) |
13 |
5 11 12
|
syl2anc |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 Po 𝐵 ) ∧ ( 𝑝 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) → ¬ ( 𝐹 ‘ 𝑝 ) 𝑅 ( 𝐹 ‘ 𝑝 ) ) |
14 |
|
csbeq1 |
⊢ ( 𝑠 = ( 𝐹 ‘ 𝑝 ) → ⦋ 𝑠 / 𝑥 ⦌ 𝑆 = ⦋ ( 𝐹 ‘ 𝑝 ) / 𝑥 ⦌ 𝑆 ) |
15 |
|
poeq1 |
⊢ ( ⦋ 𝑠 / 𝑥 ⦌ 𝑆 = ⦋ ( 𝐹 ‘ 𝑝 ) / 𝑥 ⦌ 𝑆 → ( ⦋ 𝑠 / 𝑥 ⦌ 𝑆 Po ⦋ 𝑠 / 𝑥 ⦌ 𝐵 ↔ ⦋ ( 𝐹 ‘ 𝑝 ) / 𝑥 ⦌ 𝑆 Po ⦋ 𝑠 / 𝑥 ⦌ 𝐵 ) ) |
16 |
14 15
|
syl |
⊢ ( 𝑠 = ( 𝐹 ‘ 𝑝 ) → ( ⦋ 𝑠 / 𝑥 ⦌ 𝑆 Po ⦋ 𝑠 / 𝑥 ⦌ 𝐵 ↔ ⦋ ( 𝐹 ‘ 𝑝 ) / 𝑥 ⦌ 𝑆 Po ⦋ 𝑠 / 𝑥 ⦌ 𝐵 ) ) |
17 |
|
csbeq1 |
⊢ ( 𝑠 = ( 𝐹 ‘ 𝑝 ) → ⦋ 𝑠 / 𝑥 ⦌ 𝐵 = ⦋ ( 𝐹 ‘ 𝑝 ) / 𝑥 ⦌ 𝐵 ) |
18 |
|
poeq2 |
⊢ ( ⦋ 𝑠 / 𝑥 ⦌ 𝐵 = ⦋ ( 𝐹 ‘ 𝑝 ) / 𝑥 ⦌ 𝐵 → ( ⦋ ( 𝐹 ‘ 𝑝 ) / 𝑥 ⦌ 𝑆 Po ⦋ 𝑠 / 𝑥 ⦌ 𝐵 ↔ ⦋ ( 𝐹 ‘ 𝑝 ) / 𝑥 ⦌ 𝑆 Po ⦋ ( 𝐹 ‘ 𝑝 ) / 𝑥 ⦌ 𝐵 ) ) |
19 |
17 18
|
syl |
⊢ ( 𝑠 = ( 𝐹 ‘ 𝑝 ) → ( ⦋ ( 𝐹 ‘ 𝑝 ) / 𝑥 ⦌ 𝑆 Po ⦋ 𝑠 / 𝑥 ⦌ 𝐵 ↔ ⦋ ( 𝐹 ‘ 𝑝 ) / 𝑥 ⦌ 𝑆 Po ⦋ ( 𝐹 ‘ 𝑝 ) / 𝑥 ⦌ 𝐵 ) ) |
20 |
16 19
|
bitrd |
⊢ ( 𝑠 = ( 𝐹 ‘ 𝑝 ) → ( ⦋ 𝑠 / 𝑥 ⦌ 𝑆 Po ⦋ 𝑠 / 𝑥 ⦌ 𝐵 ↔ ⦋ ( 𝐹 ‘ 𝑝 ) / 𝑥 ⦌ 𝑆 Po ⦋ ( 𝐹 ‘ 𝑝 ) / 𝑥 ⦌ 𝐵 ) ) |
21 |
|
simpl3 |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 Po 𝐵 ) ∧ ( 𝑝 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) → ∀ 𝑥 ∈ 𝐴 𝑆 Po 𝐵 ) |
22 |
|
nfv |
⊢ Ⅎ 𝑠 𝑆 Po 𝐵 |
23 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑠 / 𝑥 ⦌ 𝑆 |
24 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑠 / 𝑥 ⦌ 𝐵 |
25 |
23 24
|
nfpo |
⊢ Ⅎ 𝑥 ⦋ 𝑠 / 𝑥 ⦌ 𝑆 Po ⦋ 𝑠 / 𝑥 ⦌ 𝐵 |
26 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑠 → 𝑆 = ⦋ 𝑠 / 𝑥 ⦌ 𝑆 ) |
27 |
|
poeq1 |
⊢ ( 𝑆 = ⦋ 𝑠 / 𝑥 ⦌ 𝑆 → ( 𝑆 Po 𝐵 ↔ ⦋ 𝑠 / 𝑥 ⦌ 𝑆 Po 𝐵 ) ) |
28 |
26 27
|
syl |
⊢ ( 𝑥 = 𝑠 → ( 𝑆 Po 𝐵 ↔ ⦋ 𝑠 / 𝑥 ⦌ 𝑆 Po 𝐵 ) ) |
29 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑠 → 𝐵 = ⦋ 𝑠 / 𝑥 ⦌ 𝐵 ) |
30 |
|
poeq2 |
⊢ ( 𝐵 = ⦋ 𝑠 / 𝑥 ⦌ 𝐵 → ( ⦋ 𝑠 / 𝑥 ⦌ 𝑆 Po 𝐵 ↔ ⦋ 𝑠 / 𝑥 ⦌ 𝑆 Po ⦋ 𝑠 / 𝑥 ⦌ 𝐵 ) ) |
31 |
29 30
|
syl |
⊢ ( 𝑥 = 𝑠 → ( ⦋ 𝑠 / 𝑥 ⦌ 𝑆 Po 𝐵 ↔ ⦋ 𝑠 / 𝑥 ⦌ 𝑆 Po ⦋ 𝑠 / 𝑥 ⦌ 𝐵 ) ) |
32 |
28 31
|
bitrd |
⊢ ( 𝑥 = 𝑠 → ( 𝑆 Po 𝐵 ↔ ⦋ 𝑠 / 𝑥 ⦌ 𝑆 Po ⦋ 𝑠 / 𝑥 ⦌ 𝐵 ) ) |
33 |
22 25 32
|
cbvralw |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝑆 Po 𝐵 ↔ ∀ 𝑠 ∈ 𝐴 ⦋ 𝑠 / 𝑥 ⦌ 𝑆 Po ⦋ 𝑠 / 𝑥 ⦌ 𝐵 ) |
34 |
21 33
|
sylib |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 Po 𝐵 ) ∧ ( 𝑝 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) → ∀ 𝑠 ∈ 𝐴 ⦋ 𝑠 / 𝑥 ⦌ 𝑆 Po ⦋ 𝑠 / 𝑥 ⦌ 𝐵 ) |
35 |
20 34 11
|
rspcdva |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 Po 𝐵 ) ∧ ( 𝑝 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) → ⦋ ( 𝐹 ‘ 𝑝 ) / 𝑥 ⦌ 𝑆 Po ⦋ ( 𝐹 ‘ 𝑝 ) / 𝑥 ⦌ 𝐵 ) |
36 |
|
id |
⊢ ( 𝑡 = 𝑝 → 𝑡 = 𝑝 ) |
37 |
|
fveq2 |
⊢ ( 𝑡 = 𝑝 → ( 𝐹 ‘ 𝑡 ) = ( 𝐹 ‘ 𝑝 ) ) |
38 |
37
|
csbeq1d |
⊢ ( 𝑡 = 𝑝 → ⦋ ( 𝐹 ‘ 𝑡 ) / 𝑥 ⦌ 𝐵 = ⦋ ( 𝐹 ‘ 𝑝 ) / 𝑥 ⦌ 𝐵 ) |
39 |
36 38
|
eleq12d |
⊢ ( 𝑡 = 𝑝 → ( 𝑡 ∈ ⦋ ( 𝐹 ‘ 𝑡 ) / 𝑥 ⦌ 𝐵 ↔ 𝑝 ∈ ⦋ ( 𝐹 ‘ 𝑝 ) / 𝑥 ⦌ 𝐵 ) ) |
40 |
8
|
simp2d |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 Po 𝐵 ) ∧ ( 𝑝 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) → ∀ 𝑡 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 𝑡 ∈ ⦋ ( 𝐹 ‘ 𝑡 ) / 𝑥 ⦌ 𝐵 ) |
41 |
39 40 10
|
rspcdva |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 Po 𝐵 ) ∧ ( 𝑝 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) → 𝑝 ∈ ⦋ ( 𝐹 ‘ 𝑝 ) / 𝑥 ⦌ 𝐵 ) |
42 |
|
poirr |
⊢ ( ( ⦋ ( 𝐹 ‘ 𝑝 ) / 𝑥 ⦌ 𝑆 Po ⦋ ( 𝐹 ‘ 𝑝 ) / 𝑥 ⦌ 𝐵 ∧ 𝑝 ∈ ⦋ ( 𝐹 ‘ 𝑝 ) / 𝑥 ⦌ 𝐵 ) → ¬ 𝑝 ⦋ ( 𝐹 ‘ 𝑝 ) / 𝑥 ⦌ 𝑆 𝑝 ) |
43 |
35 41 42
|
syl2anc |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 Po 𝐵 ) ∧ ( 𝑝 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) → ¬ 𝑝 ⦋ ( 𝐹 ‘ 𝑝 ) / 𝑥 ⦌ 𝑆 𝑝 ) |
44 |
43
|
intnand |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 Po 𝐵 ) ∧ ( 𝑝 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) → ¬ ( ( 𝐹 ‘ 𝑝 ) = ( 𝐹 ‘ 𝑝 ) ∧ 𝑝 ⦋ ( 𝐹 ‘ 𝑝 ) / 𝑥 ⦌ 𝑆 𝑝 ) ) |
45 |
|
ioran |
⊢ ( ¬ ( ( 𝐹 ‘ 𝑝 ) 𝑅 ( 𝐹 ‘ 𝑝 ) ∨ ( ( 𝐹 ‘ 𝑝 ) = ( 𝐹 ‘ 𝑝 ) ∧ 𝑝 ⦋ ( 𝐹 ‘ 𝑝 ) / 𝑥 ⦌ 𝑆 𝑝 ) ) ↔ ( ¬ ( 𝐹 ‘ 𝑝 ) 𝑅 ( 𝐹 ‘ 𝑝 ) ∧ ¬ ( ( 𝐹 ‘ 𝑝 ) = ( 𝐹 ‘ 𝑝 ) ∧ 𝑝 ⦋ ( 𝐹 ‘ 𝑝 ) / 𝑥 ⦌ 𝑆 𝑝 ) ) ) |
46 |
13 44 45
|
sylanbrc |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 Po 𝐵 ) ∧ ( 𝑝 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) → ¬ ( ( 𝐹 ‘ 𝑝 ) 𝑅 ( 𝐹 ‘ 𝑝 ) ∨ ( ( 𝐹 ‘ 𝑝 ) = ( 𝐹 ‘ 𝑝 ) ∧ 𝑝 ⦋ ( 𝐹 ‘ 𝑝 ) / 𝑥 ⦌ 𝑆 𝑝 ) ) ) |
47 |
|
simpl |
⊢ ( ( 𝑦 = 𝑝 ∧ 𝑧 = 𝑝 ) → 𝑦 = 𝑝 ) |
48 |
47
|
fveq2d |
⊢ ( ( 𝑦 = 𝑝 ∧ 𝑧 = 𝑝 ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑝 ) ) |
49 |
|
simpr |
⊢ ( ( 𝑦 = 𝑝 ∧ 𝑧 = 𝑝 ) → 𝑧 = 𝑝 ) |
50 |
49
|
fveq2d |
⊢ ( ( 𝑦 = 𝑝 ∧ 𝑧 = 𝑝 ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑝 ) ) |
51 |
48 50
|
breq12d |
⊢ ( ( 𝑦 = 𝑝 ∧ 𝑧 = 𝑝 ) → ( ( 𝐹 ‘ 𝑦 ) 𝑅 ( 𝐹 ‘ 𝑧 ) ↔ ( 𝐹 ‘ 𝑝 ) 𝑅 ( 𝐹 ‘ 𝑝 ) ) ) |
52 |
48 50
|
eqeq12d |
⊢ ( ( 𝑦 = 𝑝 ∧ 𝑧 = 𝑝 ) → ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) ↔ ( 𝐹 ‘ 𝑝 ) = ( 𝐹 ‘ 𝑝 ) ) ) |
53 |
48
|
csbeq1d |
⊢ ( ( 𝑦 = 𝑝 ∧ 𝑧 = 𝑝 ) → ⦋ ( 𝐹 ‘ 𝑦 ) / 𝑥 ⦌ 𝑆 = ⦋ ( 𝐹 ‘ 𝑝 ) / 𝑥 ⦌ 𝑆 ) |
54 |
47 53 49
|
breq123d |
⊢ ( ( 𝑦 = 𝑝 ∧ 𝑧 = 𝑝 ) → ( 𝑦 ⦋ ( 𝐹 ‘ 𝑦 ) / 𝑥 ⦌ 𝑆 𝑧 ↔ 𝑝 ⦋ ( 𝐹 ‘ 𝑝 ) / 𝑥 ⦌ 𝑆 𝑝 ) ) |
55 |
52 54
|
anbi12d |
⊢ ( ( 𝑦 = 𝑝 ∧ 𝑧 = 𝑝 ) → ( ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) ∧ 𝑦 ⦋ ( 𝐹 ‘ 𝑦 ) / 𝑥 ⦌ 𝑆 𝑧 ) ↔ ( ( 𝐹 ‘ 𝑝 ) = ( 𝐹 ‘ 𝑝 ) ∧ 𝑝 ⦋ ( 𝐹 ‘ 𝑝 ) / 𝑥 ⦌ 𝑆 𝑝 ) ) ) |
56 |
51 55
|
orbi12d |
⊢ ( ( 𝑦 = 𝑝 ∧ 𝑧 = 𝑝 ) → ( ( ( 𝐹 ‘ 𝑦 ) 𝑅 ( 𝐹 ‘ 𝑧 ) ∨ ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) ∧ 𝑦 ⦋ ( 𝐹 ‘ 𝑦 ) / 𝑥 ⦌ 𝑆 𝑧 ) ) ↔ ( ( 𝐹 ‘ 𝑝 ) 𝑅 ( 𝐹 ‘ 𝑝 ) ∨ ( ( 𝐹 ‘ 𝑝 ) = ( 𝐹 ‘ 𝑝 ) ∧ 𝑝 ⦋ ( 𝐹 ‘ 𝑝 ) / 𝑥 ⦌ 𝑆 𝑝 ) ) ) ) |
57 |
56 2
|
brab2a |
⊢ ( 𝑝 𝑇 𝑝 ↔ ( ( 𝑝 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑝 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ∧ ( ( 𝐹 ‘ 𝑝 ) 𝑅 ( 𝐹 ‘ 𝑝 ) ∨ ( ( 𝐹 ‘ 𝑝 ) = ( 𝐹 ‘ 𝑝 ) ∧ 𝑝 ⦋ ( 𝐹 ‘ 𝑝 ) / 𝑥 ⦌ 𝑆 𝑝 ) ) ) ) |
58 |
57
|
simprbi |
⊢ ( 𝑝 𝑇 𝑝 → ( ( 𝐹 ‘ 𝑝 ) 𝑅 ( 𝐹 ‘ 𝑝 ) ∨ ( ( 𝐹 ‘ 𝑝 ) = ( 𝐹 ‘ 𝑝 ) ∧ 𝑝 ⦋ ( 𝐹 ‘ 𝑝 ) / 𝑥 ⦌ 𝑆 𝑝 ) ) ) |
59 |
46 58
|
nsyl |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 Po 𝐵 ) ∧ ( 𝑝 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) → ¬ 𝑝 𝑇 𝑝 ) |
60 |
|
simpr3 |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 Po 𝐵 ) ∧ ( 𝑝 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) → 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
61 |
10 60
|
jca |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 Po 𝐵 ) ∧ ( 𝑝 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) → ( 𝑝 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) |
62 |
|
simpl |
⊢ ( ( 𝑦 = 𝑝 ∧ 𝑧 = 𝑞 ) → 𝑦 = 𝑝 ) |
63 |
62
|
fveq2d |
⊢ ( ( 𝑦 = 𝑝 ∧ 𝑧 = 𝑞 ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑝 ) ) |
64 |
|
simpr |
⊢ ( ( 𝑦 = 𝑝 ∧ 𝑧 = 𝑞 ) → 𝑧 = 𝑞 ) |
65 |
64
|
fveq2d |
⊢ ( ( 𝑦 = 𝑝 ∧ 𝑧 = 𝑞 ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑞 ) ) |
66 |
63 65
|
breq12d |
⊢ ( ( 𝑦 = 𝑝 ∧ 𝑧 = 𝑞 ) → ( ( 𝐹 ‘ 𝑦 ) 𝑅 ( 𝐹 ‘ 𝑧 ) ↔ ( 𝐹 ‘ 𝑝 ) 𝑅 ( 𝐹 ‘ 𝑞 ) ) ) |
67 |
63 65
|
eqeq12d |
⊢ ( ( 𝑦 = 𝑝 ∧ 𝑧 = 𝑞 ) → ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) ↔ ( 𝐹 ‘ 𝑝 ) = ( 𝐹 ‘ 𝑞 ) ) ) |
68 |
63
|
csbeq1d |
⊢ ( ( 𝑦 = 𝑝 ∧ 𝑧 = 𝑞 ) → ⦋ ( 𝐹 ‘ 𝑦 ) / 𝑥 ⦌ 𝑆 = ⦋ ( 𝐹 ‘ 𝑝 ) / 𝑥 ⦌ 𝑆 ) |
69 |
62 68 64
|
breq123d |
⊢ ( ( 𝑦 = 𝑝 ∧ 𝑧 = 𝑞 ) → ( 𝑦 ⦋ ( 𝐹 ‘ 𝑦 ) / 𝑥 ⦌ 𝑆 𝑧 ↔ 𝑝 ⦋ ( 𝐹 ‘ 𝑝 ) / 𝑥 ⦌ 𝑆 𝑞 ) ) |
70 |
67 69
|
anbi12d |
⊢ ( ( 𝑦 = 𝑝 ∧ 𝑧 = 𝑞 ) → ( ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) ∧ 𝑦 ⦋ ( 𝐹 ‘ 𝑦 ) / 𝑥 ⦌ 𝑆 𝑧 ) ↔ ( ( 𝐹 ‘ 𝑝 ) = ( 𝐹 ‘ 𝑞 ) ∧ 𝑝 ⦋ ( 𝐹 ‘ 𝑝 ) / 𝑥 ⦌ 𝑆 𝑞 ) ) ) |
71 |
66 70
|
orbi12d |
⊢ ( ( 𝑦 = 𝑝 ∧ 𝑧 = 𝑞 ) → ( ( ( 𝐹 ‘ 𝑦 ) 𝑅 ( 𝐹 ‘ 𝑧 ) ∨ ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) ∧ 𝑦 ⦋ ( 𝐹 ‘ 𝑦 ) / 𝑥 ⦌ 𝑆 𝑧 ) ) ↔ ( ( 𝐹 ‘ 𝑝 ) 𝑅 ( 𝐹 ‘ 𝑞 ) ∨ ( ( 𝐹 ‘ 𝑝 ) = ( 𝐹 ‘ 𝑞 ) ∧ 𝑝 ⦋ ( 𝐹 ‘ 𝑝 ) / 𝑥 ⦌ 𝑆 𝑞 ) ) ) ) |
72 |
71 2
|
brab2a |
⊢ ( 𝑝 𝑇 𝑞 ↔ ( ( 𝑝 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ∧ ( ( 𝐹 ‘ 𝑝 ) 𝑅 ( 𝐹 ‘ 𝑞 ) ∨ ( ( 𝐹 ‘ 𝑝 ) = ( 𝐹 ‘ 𝑞 ) ∧ 𝑝 ⦋ ( 𝐹 ‘ 𝑝 ) / 𝑥 ⦌ 𝑆 𝑞 ) ) ) ) |
73 |
72
|
simprbi |
⊢ ( 𝑝 𝑇 𝑞 → ( ( 𝐹 ‘ 𝑝 ) 𝑅 ( 𝐹 ‘ 𝑞 ) ∨ ( ( 𝐹 ‘ 𝑝 ) = ( 𝐹 ‘ 𝑞 ) ∧ 𝑝 ⦋ ( 𝐹 ‘ 𝑝 ) / 𝑥 ⦌ 𝑆 𝑞 ) ) ) |
74 |
|
simpl |
⊢ ( ( 𝑦 = 𝑞 ∧ 𝑧 = 𝑟 ) → 𝑦 = 𝑞 ) |
75 |
74
|
fveq2d |
⊢ ( ( 𝑦 = 𝑞 ∧ 𝑧 = 𝑟 ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑞 ) ) |
76 |
|
simpr |
⊢ ( ( 𝑦 = 𝑞 ∧ 𝑧 = 𝑟 ) → 𝑧 = 𝑟 ) |
77 |
76
|
fveq2d |
⊢ ( ( 𝑦 = 𝑞 ∧ 𝑧 = 𝑟 ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑟 ) ) |
78 |
75 77
|
breq12d |
⊢ ( ( 𝑦 = 𝑞 ∧ 𝑧 = 𝑟 ) → ( ( 𝐹 ‘ 𝑦 ) 𝑅 ( 𝐹 ‘ 𝑧 ) ↔ ( 𝐹 ‘ 𝑞 ) 𝑅 ( 𝐹 ‘ 𝑟 ) ) ) |
79 |
75 77
|
eqeq12d |
⊢ ( ( 𝑦 = 𝑞 ∧ 𝑧 = 𝑟 ) → ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) ↔ ( 𝐹 ‘ 𝑞 ) = ( 𝐹 ‘ 𝑟 ) ) ) |
80 |
75
|
csbeq1d |
⊢ ( ( 𝑦 = 𝑞 ∧ 𝑧 = 𝑟 ) → ⦋ ( 𝐹 ‘ 𝑦 ) / 𝑥 ⦌ 𝑆 = ⦋ ( 𝐹 ‘ 𝑞 ) / 𝑥 ⦌ 𝑆 ) |
81 |
74 80 76
|
breq123d |
⊢ ( ( 𝑦 = 𝑞 ∧ 𝑧 = 𝑟 ) → ( 𝑦 ⦋ ( 𝐹 ‘ 𝑦 ) / 𝑥 ⦌ 𝑆 𝑧 ↔ 𝑞 ⦋ ( 𝐹 ‘ 𝑞 ) / 𝑥 ⦌ 𝑆 𝑟 ) ) |
82 |
79 81
|
anbi12d |
⊢ ( ( 𝑦 = 𝑞 ∧ 𝑧 = 𝑟 ) → ( ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) ∧ 𝑦 ⦋ ( 𝐹 ‘ 𝑦 ) / 𝑥 ⦌ 𝑆 𝑧 ) ↔ ( ( 𝐹 ‘ 𝑞 ) = ( 𝐹 ‘ 𝑟 ) ∧ 𝑞 ⦋ ( 𝐹 ‘ 𝑞 ) / 𝑥 ⦌ 𝑆 𝑟 ) ) ) |
83 |
78 82
|
orbi12d |
⊢ ( ( 𝑦 = 𝑞 ∧ 𝑧 = 𝑟 ) → ( ( ( 𝐹 ‘ 𝑦 ) 𝑅 ( 𝐹 ‘ 𝑧 ) ∨ ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) ∧ 𝑦 ⦋ ( 𝐹 ‘ 𝑦 ) / 𝑥 ⦌ 𝑆 𝑧 ) ) ↔ ( ( 𝐹 ‘ 𝑞 ) 𝑅 ( 𝐹 ‘ 𝑟 ) ∨ ( ( 𝐹 ‘ 𝑞 ) = ( 𝐹 ‘ 𝑟 ) ∧ 𝑞 ⦋ ( 𝐹 ‘ 𝑞 ) / 𝑥 ⦌ 𝑆 𝑟 ) ) ) ) |
84 |
83 2
|
brab2a |
⊢ ( 𝑞 𝑇 𝑟 ↔ ( ( 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ∧ ( ( 𝐹 ‘ 𝑞 ) 𝑅 ( 𝐹 ‘ 𝑟 ) ∨ ( ( 𝐹 ‘ 𝑞 ) = ( 𝐹 ‘ 𝑟 ) ∧ 𝑞 ⦋ ( 𝐹 ‘ 𝑞 ) / 𝑥 ⦌ 𝑆 𝑟 ) ) ) ) |
85 |
84
|
simprbi |
⊢ ( 𝑞 𝑇 𝑟 → ( ( 𝐹 ‘ 𝑞 ) 𝑅 ( 𝐹 ‘ 𝑟 ) ∨ ( ( 𝐹 ‘ 𝑞 ) = ( 𝐹 ‘ 𝑟 ) ∧ 𝑞 ⦋ ( 𝐹 ‘ 𝑞 ) / 𝑥 ⦌ 𝑆 𝑟 ) ) ) |
86 |
|
simpr2 |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 Po 𝐵 ) ∧ ( 𝑝 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) → 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
87 |
9 86
|
ffvelcdmd |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 Po 𝐵 ) ∧ ( 𝑝 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) → ( 𝐹 ‘ 𝑞 ) ∈ 𝐴 ) |
88 |
9 60
|
ffvelcdmd |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 Po 𝐵 ) ∧ ( 𝑝 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) → ( 𝐹 ‘ 𝑟 ) ∈ 𝐴 ) |
89 |
|
sotr |
⊢ ( ( 𝑅 Or 𝐴 ∧ ( ( 𝐹 ‘ 𝑝 ) ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑞 ) ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑟 ) ∈ 𝐴 ) ) → ( ( ( 𝐹 ‘ 𝑝 ) 𝑅 ( 𝐹 ‘ 𝑞 ) ∧ ( 𝐹 ‘ 𝑞 ) 𝑅 ( 𝐹 ‘ 𝑟 ) ) → ( 𝐹 ‘ 𝑝 ) 𝑅 ( 𝐹 ‘ 𝑟 ) ) ) |
90 |
5 11 87 88 89
|
syl13anc |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 Po 𝐵 ) ∧ ( 𝑝 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) → ( ( ( 𝐹 ‘ 𝑝 ) 𝑅 ( 𝐹 ‘ 𝑞 ) ∧ ( 𝐹 ‘ 𝑞 ) 𝑅 ( 𝐹 ‘ 𝑟 ) ) → ( 𝐹 ‘ 𝑝 ) 𝑅 ( 𝐹 ‘ 𝑟 ) ) ) |
91 |
90
|
imp |
⊢ ( ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 Po 𝐵 ) ∧ ( 𝑝 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) ∧ ( ( 𝐹 ‘ 𝑝 ) 𝑅 ( 𝐹 ‘ 𝑞 ) ∧ ( 𝐹 ‘ 𝑞 ) 𝑅 ( 𝐹 ‘ 𝑟 ) ) ) → ( 𝐹 ‘ 𝑝 ) 𝑅 ( 𝐹 ‘ 𝑟 ) ) |
92 |
91
|
orcd |
⊢ ( ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 Po 𝐵 ) ∧ ( 𝑝 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) ∧ ( ( 𝐹 ‘ 𝑝 ) 𝑅 ( 𝐹 ‘ 𝑞 ) ∧ ( 𝐹 ‘ 𝑞 ) 𝑅 ( 𝐹 ‘ 𝑟 ) ) ) → ( ( 𝐹 ‘ 𝑝 ) 𝑅 ( 𝐹 ‘ 𝑟 ) ∨ ( ( 𝐹 ‘ 𝑝 ) = ( 𝐹 ‘ 𝑟 ) ∧ 𝑝 ⦋ ( 𝐹 ‘ 𝑝 ) / 𝑥 ⦌ 𝑆 𝑟 ) ) ) |
93 |
92
|
ex |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 Po 𝐵 ) ∧ ( 𝑝 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) → ( ( ( 𝐹 ‘ 𝑝 ) 𝑅 ( 𝐹 ‘ 𝑞 ) ∧ ( 𝐹 ‘ 𝑞 ) 𝑅 ( 𝐹 ‘ 𝑟 ) ) → ( ( 𝐹 ‘ 𝑝 ) 𝑅 ( 𝐹 ‘ 𝑟 ) ∨ ( ( 𝐹 ‘ 𝑝 ) = ( 𝐹 ‘ 𝑟 ) ∧ 𝑝 ⦋ ( 𝐹 ‘ 𝑝 ) / 𝑥 ⦌ 𝑆 𝑟 ) ) ) ) |
94 |
|
simprll |
⊢ ( ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 Po 𝐵 ) ∧ ( 𝑝 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) ∧ ( ( ( 𝐹 ‘ 𝑝 ) = ( 𝐹 ‘ 𝑞 ) ∧ 𝑝 ⦋ ( 𝐹 ‘ 𝑝 ) / 𝑥 ⦌ 𝑆 𝑞 ) ∧ ( 𝐹 ‘ 𝑞 ) 𝑅 ( 𝐹 ‘ 𝑟 ) ) ) → ( 𝐹 ‘ 𝑝 ) = ( 𝐹 ‘ 𝑞 ) ) |
95 |
|
simprr |
⊢ ( ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 Po 𝐵 ) ∧ ( 𝑝 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) ∧ ( ( ( 𝐹 ‘ 𝑝 ) = ( 𝐹 ‘ 𝑞 ) ∧ 𝑝 ⦋ ( 𝐹 ‘ 𝑝 ) / 𝑥 ⦌ 𝑆 𝑞 ) ∧ ( 𝐹 ‘ 𝑞 ) 𝑅 ( 𝐹 ‘ 𝑟 ) ) ) → ( 𝐹 ‘ 𝑞 ) 𝑅 ( 𝐹 ‘ 𝑟 ) ) |
96 |
94 95
|
eqbrtrd |
⊢ ( ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 Po 𝐵 ) ∧ ( 𝑝 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) ∧ ( ( ( 𝐹 ‘ 𝑝 ) = ( 𝐹 ‘ 𝑞 ) ∧ 𝑝 ⦋ ( 𝐹 ‘ 𝑝 ) / 𝑥 ⦌ 𝑆 𝑞 ) ∧ ( 𝐹 ‘ 𝑞 ) 𝑅 ( 𝐹 ‘ 𝑟 ) ) ) → ( 𝐹 ‘ 𝑝 ) 𝑅 ( 𝐹 ‘ 𝑟 ) ) |
97 |
96
|
orcd |
⊢ ( ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 Po 𝐵 ) ∧ ( 𝑝 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) ∧ ( ( ( 𝐹 ‘ 𝑝 ) = ( 𝐹 ‘ 𝑞 ) ∧ 𝑝 ⦋ ( 𝐹 ‘ 𝑝 ) / 𝑥 ⦌ 𝑆 𝑞 ) ∧ ( 𝐹 ‘ 𝑞 ) 𝑅 ( 𝐹 ‘ 𝑟 ) ) ) → ( ( 𝐹 ‘ 𝑝 ) 𝑅 ( 𝐹 ‘ 𝑟 ) ∨ ( ( 𝐹 ‘ 𝑝 ) = ( 𝐹 ‘ 𝑟 ) ∧ 𝑝 ⦋ ( 𝐹 ‘ 𝑝 ) / 𝑥 ⦌ 𝑆 𝑟 ) ) ) |
98 |
97
|
ex |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 Po 𝐵 ) ∧ ( 𝑝 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) → ( ( ( ( 𝐹 ‘ 𝑝 ) = ( 𝐹 ‘ 𝑞 ) ∧ 𝑝 ⦋ ( 𝐹 ‘ 𝑝 ) / 𝑥 ⦌ 𝑆 𝑞 ) ∧ ( 𝐹 ‘ 𝑞 ) 𝑅 ( 𝐹 ‘ 𝑟 ) ) → ( ( 𝐹 ‘ 𝑝 ) 𝑅 ( 𝐹 ‘ 𝑟 ) ∨ ( ( 𝐹 ‘ 𝑝 ) = ( 𝐹 ‘ 𝑟 ) ∧ 𝑝 ⦋ ( 𝐹 ‘ 𝑝 ) / 𝑥 ⦌ 𝑆 𝑟 ) ) ) ) |
99 |
|
simprl |
⊢ ( ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 Po 𝐵 ) ∧ ( 𝑝 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) ∧ ( ( 𝐹 ‘ 𝑝 ) 𝑅 ( 𝐹 ‘ 𝑞 ) ∧ ( ( 𝐹 ‘ 𝑞 ) = ( 𝐹 ‘ 𝑟 ) ∧ 𝑞 ⦋ ( 𝐹 ‘ 𝑞 ) / 𝑥 ⦌ 𝑆 𝑟 ) ) ) → ( 𝐹 ‘ 𝑝 ) 𝑅 ( 𝐹 ‘ 𝑞 ) ) |
100 |
|
simprrl |
⊢ ( ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 Po 𝐵 ) ∧ ( 𝑝 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) ∧ ( ( 𝐹 ‘ 𝑝 ) 𝑅 ( 𝐹 ‘ 𝑞 ) ∧ ( ( 𝐹 ‘ 𝑞 ) = ( 𝐹 ‘ 𝑟 ) ∧ 𝑞 ⦋ ( 𝐹 ‘ 𝑞 ) / 𝑥 ⦌ 𝑆 𝑟 ) ) ) → ( 𝐹 ‘ 𝑞 ) = ( 𝐹 ‘ 𝑟 ) ) |
101 |
99 100
|
breqtrd |
⊢ ( ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 Po 𝐵 ) ∧ ( 𝑝 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) ∧ ( ( 𝐹 ‘ 𝑝 ) 𝑅 ( 𝐹 ‘ 𝑞 ) ∧ ( ( 𝐹 ‘ 𝑞 ) = ( 𝐹 ‘ 𝑟 ) ∧ 𝑞 ⦋ ( 𝐹 ‘ 𝑞 ) / 𝑥 ⦌ 𝑆 𝑟 ) ) ) → ( 𝐹 ‘ 𝑝 ) 𝑅 ( 𝐹 ‘ 𝑟 ) ) |
102 |
101
|
orcd |
⊢ ( ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 Po 𝐵 ) ∧ ( 𝑝 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) ∧ ( ( 𝐹 ‘ 𝑝 ) 𝑅 ( 𝐹 ‘ 𝑞 ) ∧ ( ( 𝐹 ‘ 𝑞 ) = ( 𝐹 ‘ 𝑟 ) ∧ 𝑞 ⦋ ( 𝐹 ‘ 𝑞 ) / 𝑥 ⦌ 𝑆 𝑟 ) ) ) → ( ( 𝐹 ‘ 𝑝 ) 𝑅 ( 𝐹 ‘ 𝑟 ) ∨ ( ( 𝐹 ‘ 𝑝 ) = ( 𝐹 ‘ 𝑟 ) ∧ 𝑝 ⦋ ( 𝐹 ‘ 𝑝 ) / 𝑥 ⦌ 𝑆 𝑟 ) ) ) |
103 |
102
|
ex |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 Po 𝐵 ) ∧ ( 𝑝 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) → ( ( ( 𝐹 ‘ 𝑝 ) 𝑅 ( 𝐹 ‘ 𝑞 ) ∧ ( ( 𝐹 ‘ 𝑞 ) = ( 𝐹 ‘ 𝑟 ) ∧ 𝑞 ⦋ ( 𝐹 ‘ 𝑞 ) / 𝑥 ⦌ 𝑆 𝑟 ) ) → ( ( 𝐹 ‘ 𝑝 ) 𝑅 ( 𝐹 ‘ 𝑟 ) ∨ ( ( 𝐹 ‘ 𝑝 ) = ( 𝐹 ‘ 𝑟 ) ∧ 𝑝 ⦋ ( 𝐹 ‘ 𝑝 ) / 𝑥 ⦌ 𝑆 𝑟 ) ) ) ) |
104 |
|
simprll |
⊢ ( ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 Po 𝐵 ) ∧ ( 𝑝 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) ∧ ( ( ( 𝐹 ‘ 𝑝 ) = ( 𝐹 ‘ 𝑞 ) ∧ 𝑝 ⦋ ( 𝐹 ‘ 𝑝 ) / 𝑥 ⦌ 𝑆 𝑞 ) ∧ ( ( 𝐹 ‘ 𝑞 ) = ( 𝐹 ‘ 𝑟 ) ∧ 𝑞 ⦋ ( 𝐹 ‘ 𝑞 ) / 𝑥 ⦌ 𝑆 𝑟 ) ) ) → ( 𝐹 ‘ 𝑝 ) = ( 𝐹 ‘ 𝑞 ) ) |
105 |
|
simprrl |
⊢ ( ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 Po 𝐵 ) ∧ ( 𝑝 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) ∧ ( ( ( 𝐹 ‘ 𝑝 ) = ( 𝐹 ‘ 𝑞 ) ∧ 𝑝 ⦋ ( 𝐹 ‘ 𝑝 ) / 𝑥 ⦌ 𝑆 𝑞 ) ∧ ( ( 𝐹 ‘ 𝑞 ) = ( 𝐹 ‘ 𝑟 ) ∧ 𝑞 ⦋ ( 𝐹 ‘ 𝑞 ) / 𝑥 ⦌ 𝑆 𝑟 ) ) ) → ( 𝐹 ‘ 𝑞 ) = ( 𝐹 ‘ 𝑟 ) ) |
106 |
104 105
|
eqtrd |
⊢ ( ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 Po 𝐵 ) ∧ ( 𝑝 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) ∧ ( ( ( 𝐹 ‘ 𝑝 ) = ( 𝐹 ‘ 𝑞 ) ∧ 𝑝 ⦋ ( 𝐹 ‘ 𝑝 ) / 𝑥 ⦌ 𝑆 𝑞 ) ∧ ( ( 𝐹 ‘ 𝑞 ) = ( 𝐹 ‘ 𝑟 ) ∧ 𝑞 ⦋ ( 𝐹 ‘ 𝑞 ) / 𝑥 ⦌ 𝑆 𝑟 ) ) ) → ( 𝐹 ‘ 𝑝 ) = ( 𝐹 ‘ 𝑟 ) ) |
107 |
|
simprlr |
⊢ ( ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 Po 𝐵 ) ∧ ( 𝑝 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) ∧ ( ( ( 𝐹 ‘ 𝑝 ) = ( 𝐹 ‘ 𝑞 ) ∧ 𝑝 ⦋ ( 𝐹 ‘ 𝑝 ) / 𝑥 ⦌ 𝑆 𝑞 ) ∧ ( ( 𝐹 ‘ 𝑞 ) = ( 𝐹 ‘ 𝑟 ) ∧ 𝑞 ⦋ ( 𝐹 ‘ 𝑞 ) / 𝑥 ⦌ 𝑆 𝑟 ) ) ) → 𝑝 ⦋ ( 𝐹 ‘ 𝑝 ) / 𝑥 ⦌ 𝑆 𝑞 ) |
108 |
|
simprrr |
⊢ ( ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 Po 𝐵 ) ∧ ( 𝑝 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) ∧ ( ( ( 𝐹 ‘ 𝑝 ) = ( 𝐹 ‘ 𝑞 ) ∧ 𝑝 ⦋ ( 𝐹 ‘ 𝑝 ) / 𝑥 ⦌ 𝑆 𝑞 ) ∧ ( ( 𝐹 ‘ 𝑞 ) = ( 𝐹 ‘ 𝑟 ) ∧ 𝑞 ⦋ ( 𝐹 ‘ 𝑞 ) / 𝑥 ⦌ 𝑆 𝑟 ) ) ) → 𝑞 ⦋ ( 𝐹 ‘ 𝑞 ) / 𝑥 ⦌ 𝑆 𝑟 ) |
109 |
104
|
csbeq1d |
⊢ ( ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 Po 𝐵 ) ∧ ( 𝑝 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) ∧ ( ( ( 𝐹 ‘ 𝑝 ) = ( 𝐹 ‘ 𝑞 ) ∧ 𝑝 ⦋ ( 𝐹 ‘ 𝑝 ) / 𝑥 ⦌ 𝑆 𝑞 ) ∧ ( ( 𝐹 ‘ 𝑞 ) = ( 𝐹 ‘ 𝑟 ) ∧ 𝑞 ⦋ ( 𝐹 ‘ 𝑞 ) / 𝑥 ⦌ 𝑆 𝑟 ) ) ) → ⦋ ( 𝐹 ‘ 𝑝 ) / 𝑥 ⦌ 𝑆 = ⦋ ( 𝐹 ‘ 𝑞 ) / 𝑥 ⦌ 𝑆 ) |
110 |
109
|
breqd |
⊢ ( ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 Po 𝐵 ) ∧ ( 𝑝 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) ∧ ( ( ( 𝐹 ‘ 𝑝 ) = ( 𝐹 ‘ 𝑞 ) ∧ 𝑝 ⦋ ( 𝐹 ‘ 𝑝 ) / 𝑥 ⦌ 𝑆 𝑞 ) ∧ ( ( 𝐹 ‘ 𝑞 ) = ( 𝐹 ‘ 𝑟 ) ∧ 𝑞 ⦋ ( 𝐹 ‘ 𝑞 ) / 𝑥 ⦌ 𝑆 𝑟 ) ) ) → ( 𝑞 ⦋ ( 𝐹 ‘ 𝑝 ) / 𝑥 ⦌ 𝑆 𝑟 ↔ 𝑞 ⦋ ( 𝐹 ‘ 𝑞 ) / 𝑥 ⦌ 𝑆 𝑟 ) ) |
111 |
108 110
|
mpbird |
⊢ ( ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 Po 𝐵 ) ∧ ( 𝑝 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) ∧ ( ( ( 𝐹 ‘ 𝑝 ) = ( 𝐹 ‘ 𝑞 ) ∧ 𝑝 ⦋ ( 𝐹 ‘ 𝑝 ) / 𝑥 ⦌ 𝑆 𝑞 ) ∧ ( ( 𝐹 ‘ 𝑞 ) = ( 𝐹 ‘ 𝑟 ) ∧ 𝑞 ⦋ ( 𝐹 ‘ 𝑞 ) / 𝑥 ⦌ 𝑆 𝑟 ) ) ) → 𝑞 ⦋ ( 𝐹 ‘ 𝑝 ) / 𝑥 ⦌ 𝑆 𝑟 ) |
112 |
35
|
adantr |
⊢ ( ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 Po 𝐵 ) ∧ ( 𝑝 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) ∧ ( ( ( 𝐹 ‘ 𝑝 ) = ( 𝐹 ‘ 𝑞 ) ∧ 𝑝 ⦋ ( 𝐹 ‘ 𝑝 ) / 𝑥 ⦌ 𝑆 𝑞 ) ∧ ( ( 𝐹 ‘ 𝑞 ) = ( 𝐹 ‘ 𝑟 ) ∧ 𝑞 ⦋ ( 𝐹 ‘ 𝑞 ) / 𝑥 ⦌ 𝑆 𝑟 ) ) ) → ⦋ ( 𝐹 ‘ 𝑝 ) / 𝑥 ⦌ 𝑆 Po ⦋ ( 𝐹 ‘ 𝑝 ) / 𝑥 ⦌ 𝐵 ) |
113 |
41
|
adantr |
⊢ ( ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 Po 𝐵 ) ∧ ( 𝑝 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) ∧ ( ( ( 𝐹 ‘ 𝑝 ) = ( 𝐹 ‘ 𝑞 ) ∧ 𝑝 ⦋ ( 𝐹 ‘ 𝑝 ) / 𝑥 ⦌ 𝑆 𝑞 ) ∧ ( ( 𝐹 ‘ 𝑞 ) = ( 𝐹 ‘ 𝑟 ) ∧ 𝑞 ⦋ ( 𝐹 ‘ 𝑞 ) / 𝑥 ⦌ 𝑆 𝑟 ) ) ) → 𝑝 ∈ ⦋ ( 𝐹 ‘ 𝑝 ) / 𝑥 ⦌ 𝐵 ) |
114 |
|
id |
⊢ ( 𝑡 = 𝑞 → 𝑡 = 𝑞 ) |
115 |
|
fveq2 |
⊢ ( 𝑡 = 𝑞 → ( 𝐹 ‘ 𝑡 ) = ( 𝐹 ‘ 𝑞 ) ) |
116 |
115
|
csbeq1d |
⊢ ( 𝑡 = 𝑞 → ⦋ ( 𝐹 ‘ 𝑡 ) / 𝑥 ⦌ 𝐵 = ⦋ ( 𝐹 ‘ 𝑞 ) / 𝑥 ⦌ 𝐵 ) |
117 |
114 116
|
eleq12d |
⊢ ( 𝑡 = 𝑞 → ( 𝑡 ∈ ⦋ ( 𝐹 ‘ 𝑡 ) / 𝑥 ⦌ 𝐵 ↔ 𝑞 ∈ ⦋ ( 𝐹 ‘ 𝑞 ) / 𝑥 ⦌ 𝐵 ) ) |
118 |
117 40 86
|
rspcdva |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 Po 𝐵 ) ∧ ( 𝑝 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) → 𝑞 ∈ ⦋ ( 𝐹 ‘ 𝑞 ) / 𝑥 ⦌ 𝐵 ) |
119 |
118
|
adantr |
⊢ ( ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 Po 𝐵 ) ∧ ( 𝑝 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) ∧ ( ( ( 𝐹 ‘ 𝑝 ) = ( 𝐹 ‘ 𝑞 ) ∧ 𝑝 ⦋ ( 𝐹 ‘ 𝑝 ) / 𝑥 ⦌ 𝑆 𝑞 ) ∧ ( ( 𝐹 ‘ 𝑞 ) = ( 𝐹 ‘ 𝑟 ) ∧ 𝑞 ⦋ ( 𝐹 ‘ 𝑞 ) / 𝑥 ⦌ 𝑆 𝑟 ) ) ) → 𝑞 ∈ ⦋ ( 𝐹 ‘ 𝑞 ) / 𝑥 ⦌ 𝐵 ) |
120 |
104
|
csbeq1d |
⊢ ( ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 Po 𝐵 ) ∧ ( 𝑝 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) ∧ ( ( ( 𝐹 ‘ 𝑝 ) = ( 𝐹 ‘ 𝑞 ) ∧ 𝑝 ⦋ ( 𝐹 ‘ 𝑝 ) / 𝑥 ⦌ 𝑆 𝑞 ) ∧ ( ( 𝐹 ‘ 𝑞 ) = ( 𝐹 ‘ 𝑟 ) ∧ 𝑞 ⦋ ( 𝐹 ‘ 𝑞 ) / 𝑥 ⦌ 𝑆 𝑟 ) ) ) → ⦋ ( 𝐹 ‘ 𝑝 ) / 𝑥 ⦌ 𝐵 = ⦋ ( 𝐹 ‘ 𝑞 ) / 𝑥 ⦌ 𝐵 ) |
121 |
119 120
|
eleqtrrd |
⊢ ( ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 Po 𝐵 ) ∧ ( 𝑝 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) ∧ ( ( ( 𝐹 ‘ 𝑝 ) = ( 𝐹 ‘ 𝑞 ) ∧ 𝑝 ⦋ ( 𝐹 ‘ 𝑝 ) / 𝑥 ⦌ 𝑆 𝑞 ) ∧ ( ( 𝐹 ‘ 𝑞 ) = ( 𝐹 ‘ 𝑟 ) ∧ 𝑞 ⦋ ( 𝐹 ‘ 𝑞 ) / 𝑥 ⦌ 𝑆 𝑟 ) ) ) → 𝑞 ∈ ⦋ ( 𝐹 ‘ 𝑝 ) / 𝑥 ⦌ 𝐵 ) |
122 |
|
id |
⊢ ( 𝑡 = 𝑟 → 𝑡 = 𝑟 ) |
123 |
|
fveq2 |
⊢ ( 𝑡 = 𝑟 → ( 𝐹 ‘ 𝑡 ) = ( 𝐹 ‘ 𝑟 ) ) |
124 |
123
|
csbeq1d |
⊢ ( 𝑡 = 𝑟 → ⦋ ( 𝐹 ‘ 𝑡 ) / 𝑥 ⦌ 𝐵 = ⦋ ( 𝐹 ‘ 𝑟 ) / 𝑥 ⦌ 𝐵 ) |
125 |
122 124
|
eleq12d |
⊢ ( 𝑡 = 𝑟 → ( 𝑡 ∈ ⦋ ( 𝐹 ‘ 𝑡 ) / 𝑥 ⦌ 𝐵 ↔ 𝑟 ∈ ⦋ ( 𝐹 ‘ 𝑟 ) / 𝑥 ⦌ 𝐵 ) ) |
126 |
125 40 60
|
rspcdva |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 Po 𝐵 ) ∧ ( 𝑝 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) → 𝑟 ∈ ⦋ ( 𝐹 ‘ 𝑟 ) / 𝑥 ⦌ 𝐵 ) |
127 |
126
|
adantr |
⊢ ( ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 Po 𝐵 ) ∧ ( 𝑝 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) ∧ ( ( ( 𝐹 ‘ 𝑝 ) = ( 𝐹 ‘ 𝑞 ) ∧ 𝑝 ⦋ ( 𝐹 ‘ 𝑝 ) / 𝑥 ⦌ 𝑆 𝑞 ) ∧ ( ( 𝐹 ‘ 𝑞 ) = ( 𝐹 ‘ 𝑟 ) ∧ 𝑞 ⦋ ( 𝐹 ‘ 𝑞 ) / 𝑥 ⦌ 𝑆 𝑟 ) ) ) → 𝑟 ∈ ⦋ ( 𝐹 ‘ 𝑟 ) / 𝑥 ⦌ 𝐵 ) |
128 |
106
|
csbeq1d |
⊢ ( ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 Po 𝐵 ) ∧ ( 𝑝 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) ∧ ( ( ( 𝐹 ‘ 𝑝 ) = ( 𝐹 ‘ 𝑞 ) ∧ 𝑝 ⦋ ( 𝐹 ‘ 𝑝 ) / 𝑥 ⦌ 𝑆 𝑞 ) ∧ ( ( 𝐹 ‘ 𝑞 ) = ( 𝐹 ‘ 𝑟 ) ∧ 𝑞 ⦋ ( 𝐹 ‘ 𝑞 ) / 𝑥 ⦌ 𝑆 𝑟 ) ) ) → ⦋ ( 𝐹 ‘ 𝑝 ) / 𝑥 ⦌ 𝐵 = ⦋ ( 𝐹 ‘ 𝑟 ) / 𝑥 ⦌ 𝐵 ) |
129 |
127 128
|
eleqtrrd |
⊢ ( ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 Po 𝐵 ) ∧ ( 𝑝 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) ∧ ( ( ( 𝐹 ‘ 𝑝 ) = ( 𝐹 ‘ 𝑞 ) ∧ 𝑝 ⦋ ( 𝐹 ‘ 𝑝 ) / 𝑥 ⦌ 𝑆 𝑞 ) ∧ ( ( 𝐹 ‘ 𝑞 ) = ( 𝐹 ‘ 𝑟 ) ∧ 𝑞 ⦋ ( 𝐹 ‘ 𝑞 ) / 𝑥 ⦌ 𝑆 𝑟 ) ) ) → 𝑟 ∈ ⦋ ( 𝐹 ‘ 𝑝 ) / 𝑥 ⦌ 𝐵 ) |
130 |
|
potr |
⊢ ( ( ⦋ ( 𝐹 ‘ 𝑝 ) / 𝑥 ⦌ 𝑆 Po ⦋ ( 𝐹 ‘ 𝑝 ) / 𝑥 ⦌ 𝐵 ∧ ( 𝑝 ∈ ⦋ ( 𝐹 ‘ 𝑝 ) / 𝑥 ⦌ 𝐵 ∧ 𝑞 ∈ ⦋ ( 𝐹 ‘ 𝑝 ) / 𝑥 ⦌ 𝐵 ∧ 𝑟 ∈ ⦋ ( 𝐹 ‘ 𝑝 ) / 𝑥 ⦌ 𝐵 ) ) → ( ( 𝑝 ⦋ ( 𝐹 ‘ 𝑝 ) / 𝑥 ⦌ 𝑆 𝑞 ∧ 𝑞 ⦋ ( 𝐹 ‘ 𝑝 ) / 𝑥 ⦌ 𝑆 𝑟 ) → 𝑝 ⦋ ( 𝐹 ‘ 𝑝 ) / 𝑥 ⦌ 𝑆 𝑟 ) ) |
131 |
112 113 121 129 130
|
syl13anc |
⊢ ( ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 Po 𝐵 ) ∧ ( 𝑝 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) ∧ ( ( ( 𝐹 ‘ 𝑝 ) = ( 𝐹 ‘ 𝑞 ) ∧ 𝑝 ⦋ ( 𝐹 ‘ 𝑝 ) / 𝑥 ⦌ 𝑆 𝑞 ) ∧ ( ( 𝐹 ‘ 𝑞 ) = ( 𝐹 ‘ 𝑟 ) ∧ 𝑞 ⦋ ( 𝐹 ‘ 𝑞 ) / 𝑥 ⦌ 𝑆 𝑟 ) ) ) → ( ( 𝑝 ⦋ ( 𝐹 ‘ 𝑝 ) / 𝑥 ⦌ 𝑆 𝑞 ∧ 𝑞 ⦋ ( 𝐹 ‘ 𝑝 ) / 𝑥 ⦌ 𝑆 𝑟 ) → 𝑝 ⦋ ( 𝐹 ‘ 𝑝 ) / 𝑥 ⦌ 𝑆 𝑟 ) ) |
132 |
107 111 131
|
mp2and |
⊢ ( ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 Po 𝐵 ) ∧ ( 𝑝 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) ∧ ( ( ( 𝐹 ‘ 𝑝 ) = ( 𝐹 ‘ 𝑞 ) ∧ 𝑝 ⦋ ( 𝐹 ‘ 𝑝 ) / 𝑥 ⦌ 𝑆 𝑞 ) ∧ ( ( 𝐹 ‘ 𝑞 ) = ( 𝐹 ‘ 𝑟 ) ∧ 𝑞 ⦋ ( 𝐹 ‘ 𝑞 ) / 𝑥 ⦌ 𝑆 𝑟 ) ) ) → 𝑝 ⦋ ( 𝐹 ‘ 𝑝 ) / 𝑥 ⦌ 𝑆 𝑟 ) |
133 |
106 132
|
jca |
⊢ ( ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 Po 𝐵 ) ∧ ( 𝑝 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) ∧ ( ( ( 𝐹 ‘ 𝑝 ) = ( 𝐹 ‘ 𝑞 ) ∧ 𝑝 ⦋ ( 𝐹 ‘ 𝑝 ) / 𝑥 ⦌ 𝑆 𝑞 ) ∧ ( ( 𝐹 ‘ 𝑞 ) = ( 𝐹 ‘ 𝑟 ) ∧ 𝑞 ⦋ ( 𝐹 ‘ 𝑞 ) / 𝑥 ⦌ 𝑆 𝑟 ) ) ) → ( ( 𝐹 ‘ 𝑝 ) = ( 𝐹 ‘ 𝑟 ) ∧ 𝑝 ⦋ ( 𝐹 ‘ 𝑝 ) / 𝑥 ⦌ 𝑆 𝑟 ) ) |
134 |
133
|
olcd |
⊢ ( ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 Po 𝐵 ) ∧ ( 𝑝 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) ∧ ( ( ( 𝐹 ‘ 𝑝 ) = ( 𝐹 ‘ 𝑞 ) ∧ 𝑝 ⦋ ( 𝐹 ‘ 𝑝 ) / 𝑥 ⦌ 𝑆 𝑞 ) ∧ ( ( 𝐹 ‘ 𝑞 ) = ( 𝐹 ‘ 𝑟 ) ∧ 𝑞 ⦋ ( 𝐹 ‘ 𝑞 ) / 𝑥 ⦌ 𝑆 𝑟 ) ) ) → ( ( 𝐹 ‘ 𝑝 ) 𝑅 ( 𝐹 ‘ 𝑟 ) ∨ ( ( 𝐹 ‘ 𝑝 ) = ( 𝐹 ‘ 𝑟 ) ∧ 𝑝 ⦋ ( 𝐹 ‘ 𝑝 ) / 𝑥 ⦌ 𝑆 𝑟 ) ) ) |
135 |
134
|
ex |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 Po 𝐵 ) ∧ ( 𝑝 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) → ( ( ( ( 𝐹 ‘ 𝑝 ) = ( 𝐹 ‘ 𝑞 ) ∧ 𝑝 ⦋ ( 𝐹 ‘ 𝑝 ) / 𝑥 ⦌ 𝑆 𝑞 ) ∧ ( ( 𝐹 ‘ 𝑞 ) = ( 𝐹 ‘ 𝑟 ) ∧ 𝑞 ⦋ ( 𝐹 ‘ 𝑞 ) / 𝑥 ⦌ 𝑆 𝑟 ) ) → ( ( 𝐹 ‘ 𝑝 ) 𝑅 ( 𝐹 ‘ 𝑟 ) ∨ ( ( 𝐹 ‘ 𝑝 ) = ( 𝐹 ‘ 𝑟 ) ∧ 𝑝 ⦋ ( 𝐹 ‘ 𝑝 ) / 𝑥 ⦌ 𝑆 𝑟 ) ) ) ) |
136 |
93 98 103 135
|
ccased |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 Po 𝐵 ) ∧ ( 𝑝 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) → ( ( ( ( 𝐹 ‘ 𝑝 ) 𝑅 ( 𝐹 ‘ 𝑞 ) ∨ ( ( 𝐹 ‘ 𝑝 ) = ( 𝐹 ‘ 𝑞 ) ∧ 𝑝 ⦋ ( 𝐹 ‘ 𝑝 ) / 𝑥 ⦌ 𝑆 𝑞 ) ) ∧ ( ( 𝐹 ‘ 𝑞 ) 𝑅 ( 𝐹 ‘ 𝑟 ) ∨ ( ( 𝐹 ‘ 𝑞 ) = ( 𝐹 ‘ 𝑟 ) ∧ 𝑞 ⦋ ( 𝐹 ‘ 𝑞 ) / 𝑥 ⦌ 𝑆 𝑟 ) ) ) → ( ( 𝐹 ‘ 𝑝 ) 𝑅 ( 𝐹 ‘ 𝑟 ) ∨ ( ( 𝐹 ‘ 𝑝 ) = ( 𝐹 ‘ 𝑟 ) ∧ 𝑝 ⦋ ( 𝐹 ‘ 𝑝 ) / 𝑥 ⦌ 𝑆 𝑟 ) ) ) ) |
137 |
73 85 136
|
syl2ani |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 Po 𝐵 ) ∧ ( 𝑝 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) → ( ( 𝑝 𝑇 𝑞 ∧ 𝑞 𝑇 𝑟 ) → ( ( 𝐹 ‘ 𝑝 ) 𝑅 ( 𝐹 ‘ 𝑟 ) ∨ ( ( 𝐹 ‘ 𝑝 ) = ( 𝐹 ‘ 𝑟 ) ∧ 𝑝 ⦋ ( 𝐹 ‘ 𝑝 ) / 𝑥 ⦌ 𝑆 𝑟 ) ) ) ) |
138 |
|
simpl |
⊢ ( ( 𝑦 = 𝑝 ∧ 𝑧 = 𝑟 ) → 𝑦 = 𝑝 ) |
139 |
138
|
fveq2d |
⊢ ( ( 𝑦 = 𝑝 ∧ 𝑧 = 𝑟 ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑝 ) ) |
140 |
|
simpr |
⊢ ( ( 𝑦 = 𝑝 ∧ 𝑧 = 𝑟 ) → 𝑧 = 𝑟 ) |
141 |
140
|
fveq2d |
⊢ ( ( 𝑦 = 𝑝 ∧ 𝑧 = 𝑟 ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑟 ) ) |
142 |
139 141
|
breq12d |
⊢ ( ( 𝑦 = 𝑝 ∧ 𝑧 = 𝑟 ) → ( ( 𝐹 ‘ 𝑦 ) 𝑅 ( 𝐹 ‘ 𝑧 ) ↔ ( 𝐹 ‘ 𝑝 ) 𝑅 ( 𝐹 ‘ 𝑟 ) ) ) |
143 |
139 141
|
eqeq12d |
⊢ ( ( 𝑦 = 𝑝 ∧ 𝑧 = 𝑟 ) → ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) ↔ ( 𝐹 ‘ 𝑝 ) = ( 𝐹 ‘ 𝑟 ) ) ) |
144 |
139
|
csbeq1d |
⊢ ( ( 𝑦 = 𝑝 ∧ 𝑧 = 𝑟 ) → ⦋ ( 𝐹 ‘ 𝑦 ) / 𝑥 ⦌ 𝑆 = ⦋ ( 𝐹 ‘ 𝑝 ) / 𝑥 ⦌ 𝑆 ) |
145 |
138 144 140
|
breq123d |
⊢ ( ( 𝑦 = 𝑝 ∧ 𝑧 = 𝑟 ) → ( 𝑦 ⦋ ( 𝐹 ‘ 𝑦 ) / 𝑥 ⦌ 𝑆 𝑧 ↔ 𝑝 ⦋ ( 𝐹 ‘ 𝑝 ) / 𝑥 ⦌ 𝑆 𝑟 ) ) |
146 |
143 145
|
anbi12d |
⊢ ( ( 𝑦 = 𝑝 ∧ 𝑧 = 𝑟 ) → ( ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) ∧ 𝑦 ⦋ ( 𝐹 ‘ 𝑦 ) / 𝑥 ⦌ 𝑆 𝑧 ) ↔ ( ( 𝐹 ‘ 𝑝 ) = ( 𝐹 ‘ 𝑟 ) ∧ 𝑝 ⦋ ( 𝐹 ‘ 𝑝 ) / 𝑥 ⦌ 𝑆 𝑟 ) ) ) |
147 |
142 146
|
orbi12d |
⊢ ( ( 𝑦 = 𝑝 ∧ 𝑧 = 𝑟 ) → ( ( ( 𝐹 ‘ 𝑦 ) 𝑅 ( 𝐹 ‘ 𝑧 ) ∨ ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) ∧ 𝑦 ⦋ ( 𝐹 ‘ 𝑦 ) / 𝑥 ⦌ 𝑆 𝑧 ) ) ↔ ( ( 𝐹 ‘ 𝑝 ) 𝑅 ( 𝐹 ‘ 𝑟 ) ∨ ( ( 𝐹 ‘ 𝑝 ) = ( 𝐹 ‘ 𝑟 ) ∧ 𝑝 ⦋ ( 𝐹 ‘ 𝑝 ) / 𝑥 ⦌ 𝑆 𝑟 ) ) ) ) |
148 |
147 2
|
brab2a |
⊢ ( 𝑝 𝑇 𝑟 ↔ ( ( 𝑝 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ∧ ( ( 𝐹 ‘ 𝑝 ) 𝑅 ( 𝐹 ‘ 𝑟 ) ∨ ( ( 𝐹 ‘ 𝑝 ) = ( 𝐹 ‘ 𝑟 ) ∧ 𝑝 ⦋ ( 𝐹 ‘ 𝑝 ) / 𝑥 ⦌ 𝑆 𝑟 ) ) ) ) |
149 |
148
|
biimpri |
⊢ ( ( ( 𝑝 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ∧ ( ( 𝐹 ‘ 𝑝 ) 𝑅 ( 𝐹 ‘ 𝑟 ) ∨ ( ( 𝐹 ‘ 𝑝 ) = ( 𝐹 ‘ 𝑟 ) ∧ 𝑝 ⦋ ( 𝐹 ‘ 𝑝 ) / 𝑥 ⦌ 𝑆 𝑟 ) ) ) → 𝑝 𝑇 𝑟 ) |
150 |
61 137 149
|
syl6an |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 Po 𝐵 ) ∧ ( 𝑝 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) → ( ( 𝑝 𝑇 𝑞 ∧ 𝑞 𝑇 𝑟 ) → 𝑝 𝑇 𝑟 ) ) |
151 |
59 150
|
jca |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 Po 𝐵 ) ∧ ( 𝑝 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) → ( ¬ 𝑝 𝑇 𝑝 ∧ ( ( 𝑝 𝑇 𝑞 ∧ 𝑞 𝑇 𝑟 ) → 𝑝 𝑇 𝑟 ) ) ) |
152 |
151
|
ralrimivvva |
⊢ ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 Po 𝐵 ) → ∀ 𝑝 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∀ 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∀ 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ( ¬ 𝑝 𝑇 𝑝 ∧ ( ( 𝑝 𝑇 𝑞 ∧ 𝑞 𝑇 𝑟 ) → 𝑝 𝑇 𝑟 ) ) ) |
153 |
|
df-po |
⊢ ( 𝑇 Po ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∀ 𝑝 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∀ 𝑞 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∀ 𝑟 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ( ¬ 𝑝 𝑇 𝑝 ∧ ( ( 𝑝 𝑇 𝑞 ∧ 𝑞 𝑇 𝑟 ) → 𝑝 𝑇 𝑟 ) ) ) |
154 |
152 153
|
sylibr |
⊢ ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 Po 𝐵 ) → 𝑇 Po ∪ 𝑥 ∈ 𝐴 𝐵 ) |