Step |
Hyp |
Ref |
Expression |
1 |
|
weiunlem1.1 |
⊢ 𝐹 = ( 𝑤 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↦ ( ℩ 𝑢 ∈ { 𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵 } ∀ 𝑣 ∈ { 𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵 } ¬ 𝑣 𝑅 𝑢 ) ) |
2 |
|
ssrab2 |
⊢ { 𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵 } ⊆ 𝐴 |
3 |
|
eliun |
⊢ ( 𝑤 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃ 𝑥 ∈ 𝐴 𝑤 ∈ 𝐵 ) |
4 |
|
rabn0 |
⊢ ( { 𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵 } ≠ ∅ ↔ ∃ 𝑥 ∈ 𝐴 𝑤 ∈ 𝐵 ) |
5 |
3 4
|
sylbb2 |
⊢ ( 𝑤 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 → { 𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵 } ≠ ∅ ) |
6 |
|
wereu2 |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( { 𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵 } ⊆ 𝐴 ∧ { 𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵 } ≠ ∅ ) ) → ∃! 𝑢 ∈ { 𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵 } ∀ 𝑣 ∈ { 𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵 } ¬ 𝑣 𝑅 𝑢 ) |
7 |
2 6
|
mpanr1 |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ { 𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵 } ≠ ∅ ) → ∃! 𝑢 ∈ { 𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵 } ∀ 𝑣 ∈ { 𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵 } ¬ 𝑣 𝑅 𝑢 ) |
8 |
5 7
|
sylan2 |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ 𝑤 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) → ∃! 𝑢 ∈ { 𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵 } ∀ 𝑣 ∈ { 𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵 } ¬ 𝑣 𝑅 𝑢 ) |
9 |
|
riotacl |
⊢ ( ∃! 𝑢 ∈ { 𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵 } ∀ 𝑣 ∈ { 𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵 } ¬ 𝑣 𝑅 𝑢 → ( ℩ 𝑢 ∈ { 𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵 } ∀ 𝑣 ∈ { 𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵 } ¬ 𝑣 𝑅 𝑢 ) ∈ { 𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵 } ) |
10 |
8 9
|
syl |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ 𝑤 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) → ( ℩ 𝑢 ∈ { 𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵 } ∀ 𝑣 ∈ { 𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵 } ¬ 𝑣 𝑅 𝑢 ) ∈ { 𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵 } ) |
11 |
2 10
|
sselid |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ 𝑤 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) → ( ℩ 𝑢 ∈ { 𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵 } ∀ 𝑣 ∈ { 𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵 } ¬ 𝑣 𝑅 𝑢 ) ∈ 𝐴 ) |
12 |
11 1
|
fmptd |
⊢ ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) → 𝐹 : ∪ 𝑥 ∈ 𝐴 𝐵 ⟶ 𝐴 ) |
13 |
|
simpr |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ 𝑤 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) → 𝑤 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
14 |
1
|
fvmpt2 |
⊢ ( ( 𝑤 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ ( ℩ 𝑢 ∈ { 𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵 } ∀ 𝑣 ∈ { 𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵 } ¬ 𝑣 𝑅 𝑢 ) ∈ { 𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵 } ) → ( 𝐹 ‘ 𝑤 ) = ( ℩ 𝑢 ∈ { 𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵 } ∀ 𝑣 ∈ { 𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵 } ¬ 𝑣 𝑅 𝑢 ) ) |
15 |
13 10 14
|
syl2anc |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ 𝑤 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) → ( 𝐹 ‘ 𝑤 ) = ( ℩ 𝑢 ∈ { 𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵 } ∀ 𝑣 ∈ { 𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵 } ¬ 𝑣 𝑅 𝑢 ) ) |
16 |
15 10
|
eqeltrd |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ 𝑤 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) → ( 𝐹 ‘ 𝑤 ) ∈ { 𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵 } ) |
17 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐴 |
18 |
17
|
elrabsf |
⊢ ( ( 𝐹 ‘ 𝑤 ) ∈ { 𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵 } ↔ ( ( 𝐹 ‘ 𝑤 ) ∈ 𝐴 ∧ [ ( 𝐹 ‘ 𝑤 ) / 𝑥 ] 𝑤 ∈ 𝐵 ) ) |
19 |
16 18
|
sylib |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ 𝑤 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) → ( ( 𝐹 ‘ 𝑤 ) ∈ 𝐴 ∧ [ ( 𝐹 ‘ 𝑤 ) / 𝑥 ] 𝑤 ∈ 𝐵 ) ) |
20 |
19
|
simprd |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ 𝑤 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) → [ ( 𝐹 ‘ 𝑤 ) / 𝑥 ] 𝑤 ∈ 𝐵 ) |
21 |
|
sbcel2 |
⊢ ( [ ( 𝐹 ‘ 𝑤 ) / 𝑥 ] 𝑤 ∈ 𝐵 ↔ 𝑤 ∈ ⦋ ( 𝐹 ‘ 𝑤 ) / 𝑥 ⦌ 𝐵 ) |
22 |
20 21
|
sylib |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ 𝑤 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) → 𝑤 ∈ ⦋ ( 𝐹 ‘ 𝑤 ) / 𝑥 ⦌ 𝐵 ) |
23 |
22
|
ralrimiva |
⊢ ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) → ∀ 𝑤 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 𝑤 ∈ ⦋ ( 𝐹 ‘ 𝑤 ) / 𝑥 ⦌ 𝐵 ) |
24 |
15
|
eqcomd |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ 𝑤 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) → ( ℩ 𝑢 ∈ { 𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵 } ∀ 𝑣 ∈ { 𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵 } ¬ 𝑣 𝑅 𝑢 ) = ( 𝐹 ‘ 𝑤 ) ) |
25 |
|
nfcv |
⊢ Ⅎ 𝑢 ∪ 𝑥 ∈ 𝐴 𝐵 |
26 |
|
nfriota1 |
⊢ Ⅎ 𝑢 ( ℩ 𝑢 ∈ { 𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵 } ∀ 𝑣 ∈ { 𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵 } ¬ 𝑣 𝑅 𝑢 ) |
27 |
25 26
|
nfmpt |
⊢ Ⅎ 𝑢 ( 𝑤 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↦ ( ℩ 𝑢 ∈ { 𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵 } ∀ 𝑣 ∈ { 𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵 } ¬ 𝑣 𝑅 𝑢 ) ) |
28 |
1 27
|
nfcxfr |
⊢ Ⅎ 𝑢 𝐹 |
29 |
|
nfcv |
⊢ Ⅎ 𝑢 𝑤 |
30 |
28 29
|
nffv |
⊢ Ⅎ 𝑢 ( 𝐹 ‘ 𝑤 ) |
31 |
|
nfcv |
⊢ Ⅎ 𝑢 { 𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵 } |
32 |
|
nfcv |
⊢ Ⅎ 𝑢 𝑣 |
33 |
|
nfcv |
⊢ Ⅎ 𝑢 𝑅 |
34 |
32 33 30
|
nfbr |
⊢ Ⅎ 𝑢 𝑣 𝑅 ( 𝐹 ‘ 𝑤 ) |
35 |
34
|
nfn |
⊢ Ⅎ 𝑢 ¬ 𝑣 𝑅 ( 𝐹 ‘ 𝑤 ) |
36 |
31 35
|
nfralw |
⊢ Ⅎ 𝑢 ∀ 𝑣 ∈ { 𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵 } ¬ 𝑣 𝑅 ( 𝐹 ‘ 𝑤 ) |
37 |
|
nfcv |
⊢ Ⅎ 𝑣 ∪ 𝑥 ∈ 𝐴 𝐵 |
38 |
|
nfra1 |
⊢ Ⅎ 𝑣 ∀ 𝑣 ∈ { 𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵 } ¬ 𝑣 𝑅 𝑢 |
39 |
|
nfcv |
⊢ Ⅎ 𝑣 { 𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵 } |
40 |
38 39
|
nfriota |
⊢ Ⅎ 𝑣 ( ℩ 𝑢 ∈ { 𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵 } ∀ 𝑣 ∈ { 𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵 } ¬ 𝑣 𝑅 𝑢 ) |
41 |
37 40
|
nfmpt |
⊢ Ⅎ 𝑣 ( 𝑤 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↦ ( ℩ 𝑢 ∈ { 𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵 } ∀ 𝑣 ∈ { 𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵 } ¬ 𝑣 𝑅 𝑢 ) ) |
42 |
1 41
|
nfcxfr |
⊢ Ⅎ 𝑣 𝐹 |
43 |
|
nfcv |
⊢ Ⅎ 𝑣 𝑤 |
44 |
42 43
|
nffv |
⊢ Ⅎ 𝑣 ( 𝐹 ‘ 𝑤 ) |
45 |
44
|
nfeq2 |
⊢ Ⅎ 𝑣 𝑢 = ( 𝐹 ‘ 𝑤 ) |
46 |
|
breq2 |
⊢ ( 𝑢 = ( 𝐹 ‘ 𝑤 ) → ( 𝑣 𝑅 𝑢 ↔ 𝑣 𝑅 ( 𝐹 ‘ 𝑤 ) ) ) |
47 |
46
|
notbid |
⊢ ( 𝑢 = ( 𝐹 ‘ 𝑤 ) → ( ¬ 𝑣 𝑅 𝑢 ↔ ¬ 𝑣 𝑅 ( 𝐹 ‘ 𝑤 ) ) ) |
48 |
45 47
|
ralbid |
⊢ ( 𝑢 = ( 𝐹 ‘ 𝑤 ) → ( ∀ 𝑣 ∈ { 𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵 } ¬ 𝑣 𝑅 𝑢 ↔ ∀ 𝑣 ∈ { 𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵 } ¬ 𝑣 𝑅 ( 𝐹 ‘ 𝑤 ) ) ) |
49 |
30 36 48
|
riota2f |
⊢ ( ( ( 𝐹 ‘ 𝑤 ) ∈ { 𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵 } ∧ ∃! 𝑢 ∈ { 𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵 } ∀ 𝑣 ∈ { 𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵 } ¬ 𝑣 𝑅 𝑢 ) → ( ∀ 𝑣 ∈ { 𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵 } ¬ 𝑣 𝑅 ( 𝐹 ‘ 𝑤 ) ↔ ( ℩ 𝑢 ∈ { 𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵 } ∀ 𝑣 ∈ { 𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵 } ¬ 𝑣 𝑅 𝑢 ) = ( 𝐹 ‘ 𝑤 ) ) ) |
50 |
16 8 49
|
syl2anc |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ 𝑤 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) → ( ∀ 𝑣 ∈ { 𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵 } ¬ 𝑣 𝑅 ( 𝐹 ‘ 𝑤 ) ↔ ( ℩ 𝑢 ∈ { 𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵 } ∀ 𝑣 ∈ { 𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵 } ¬ 𝑣 𝑅 𝑢 ) = ( 𝐹 ‘ 𝑤 ) ) ) |
51 |
24 50
|
mpbird |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ 𝑤 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) → ∀ 𝑣 ∈ { 𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵 } ¬ 𝑣 𝑅 ( 𝐹 ‘ 𝑤 ) ) |
52 |
17
|
elrabsf |
⊢ ( 𝑣 ∈ { 𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵 } ↔ ( 𝑣 ∈ 𝐴 ∧ [ 𝑣 / 𝑥 ] 𝑤 ∈ 𝐵 ) ) |
53 |
|
sbcel2 |
⊢ ( [ 𝑣 / 𝑥 ] 𝑤 ∈ 𝐵 ↔ 𝑤 ∈ ⦋ 𝑣 / 𝑥 ⦌ 𝐵 ) |
54 |
53
|
anbi2i |
⊢ ( ( 𝑣 ∈ 𝐴 ∧ [ 𝑣 / 𝑥 ] 𝑤 ∈ 𝐵 ) ↔ ( 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ ⦋ 𝑣 / 𝑥 ⦌ 𝐵 ) ) |
55 |
52 54
|
bitri |
⊢ ( 𝑣 ∈ { 𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵 } ↔ ( 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ ⦋ 𝑣 / 𝑥 ⦌ 𝐵 ) ) |
56 |
55
|
imbi1i |
⊢ ( ( 𝑣 ∈ { 𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵 } → ¬ 𝑣 𝑅 ( 𝐹 ‘ 𝑤 ) ) ↔ ( ( 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ ⦋ 𝑣 / 𝑥 ⦌ 𝐵 ) → ¬ 𝑣 𝑅 ( 𝐹 ‘ 𝑤 ) ) ) |
57 |
|
impexp |
⊢ ( ( ( 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ ⦋ 𝑣 / 𝑥 ⦌ 𝐵 ) → ¬ 𝑣 𝑅 ( 𝐹 ‘ 𝑤 ) ) ↔ ( 𝑣 ∈ 𝐴 → ( 𝑤 ∈ ⦋ 𝑣 / 𝑥 ⦌ 𝐵 → ¬ 𝑣 𝑅 ( 𝐹 ‘ 𝑤 ) ) ) ) |
58 |
56 57
|
bitri |
⊢ ( ( 𝑣 ∈ { 𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵 } → ¬ 𝑣 𝑅 ( 𝐹 ‘ 𝑤 ) ) ↔ ( 𝑣 ∈ 𝐴 → ( 𝑤 ∈ ⦋ 𝑣 / 𝑥 ⦌ 𝐵 → ¬ 𝑣 𝑅 ( 𝐹 ‘ 𝑤 ) ) ) ) |
59 |
58
|
ralbii2 |
⊢ ( ∀ 𝑣 ∈ { 𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵 } ¬ 𝑣 𝑅 ( 𝐹 ‘ 𝑤 ) ↔ ∀ 𝑣 ∈ 𝐴 ( 𝑤 ∈ ⦋ 𝑣 / 𝑥 ⦌ 𝐵 → ¬ 𝑣 𝑅 ( 𝐹 ‘ 𝑤 ) ) ) |
60 |
51 59
|
sylib |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ 𝑤 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) → ∀ 𝑣 ∈ 𝐴 ( 𝑤 ∈ ⦋ 𝑣 / 𝑥 ⦌ 𝐵 → ¬ 𝑣 𝑅 ( 𝐹 ‘ 𝑤 ) ) ) |
61 |
60
|
ralrimiva |
⊢ ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) → ∀ 𝑤 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∀ 𝑣 ∈ 𝐴 ( 𝑤 ∈ ⦋ 𝑣 / 𝑥 ⦌ 𝐵 → ¬ 𝑣 𝑅 ( 𝐹 ‘ 𝑤 ) ) ) |
62 |
12 23 61
|
3jca |
⊢ ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) → ( 𝐹 : ∪ 𝑥 ∈ 𝐴 𝐵 ⟶ 𝐴 ∧ ∀ 𝑤 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 𝑤 ∈ ⦋ ( 𝐹 ‘ 𝑤 ) / 𝑥 ⦌ 𝐵 ∧ ∀ 𝑤 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∀ 𝑣 ∈ 𝐴 ( 𝑤 ∈ ⦋ 𝑣 / 𝑥 ⦌ 𝐵 → ¬ 𝑣 𝑅 ( 𝐹 ‘ 𝑤 ) ) ) ) |