Step |
Hyp |
Ref |
Expression |
1 |
|
weiunfr.1 |
⊢ 𝐹 = ( 𝑤 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↦ ( ℩ 𝑢 ∈ { 𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵 } ∀ 𝑣 ∈ { 𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵 } ¬ 𝑣 𝑅 𝑢 ) ) |
2 |
|
weiunfr.2 |
⊢ 𝑇 = { 〈 𝑦 , 𝑧 〉 ∣ ( ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ∧ ( ( 𝐹 ‘ 𝑦 ) 𝑅 ( 𝐹 ‘ 𝑧 ) ∨ ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) ∧ 𝑦 ⦋ ( 𝐹 ‘ 𝑦 ) / 𝑥 ⦌ 𝑆 𝑧 ) ) ) } |
3 |
|
breq2 |
⊢ ( 𝑢 = 𝑚 → ( 𝑣 𝑅 𝑢 ↔ 𝑣 𝑅 𝑚 ) ) |
4 |
3
|
notbid |
⊢ ( 𝑢 = 𝑚 → ( ¬ 𝑣 𝑅 𝑢 ↔ ¬ 𝑣 𝑅 𝑚 ) ) |
5 |
4
|
ralbidv |
⊢ ( 𝑢 = 𝑚 → ( ∀ 𝑣 ∈ { 𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵 } ¬ 𝑣 𝑅 𝑢 ↔ ∀ 𝑣 ∈ { 𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵 } ¬ 𝑣 𝑅 𝑚 ) ) |
6 |
5
|
cbvriotavw |
⊢ ( ℩ 𝑢 ∈ { 𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵 } ∀ 𝑣 ∈ { 𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵 } ¬ 𝑣 𝑅 𝑢 ) = ( ℩ 𝑚 ∈ { 𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵 } ∀ 𝑣 ∈ { 𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵 } ¬ 𝑣 𝑅 𝑚 ) |
7 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐴 |
8 |
|
nfcv |
⊢ Ⅎ 𝑙 𝐴 |
9 |
|
nfv |
⊢ Ⅎ 𝑙 𝑤 ∈ 𝐵 |
10 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑙 / 𝑥 ⦌ 𝐵 |
11 |
10
|
nfcri |
⊢ Ⅎ 𝑥 𝑤 ∈ ⦋ 𝑙 / 𝑥 ⦌ 𝐵 |
12 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑙 → 𝐵 = ⦋ 𝑙 / 𝑥 ⦌ 𝐵 ) |
13 |
12
|
eleq2d |
⊢ ( 𝑥 = 𝑙 → ( 𝑤 ∈ 𝐵 ↔ 𝑤 ∈ ⦋ 𝑙 / 𝑥 ⦌ 𝐵 ) ) |
14 |
7 8 9 11 13
|
cbvrabw |
⊢ { 𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵 } = { 𝑙 ∈ 𝐴 ∣ 𝑤 ∈ ⦋ 𝑙 / 𝑥 ⦌ 𝐵 } |
15 |
|
eleq1w |
⊢ ( 𝑤 = 𝑘 → ( 𝑤 ∈ ⦋ 𝑙 / 𝑥 ⦌ 𝐵 ↔ 𝑘 ∈ ⦋ 𝑙 / 𝑥 ⦌ 𝐵 ) ) |
16 |
15
|
rabbidv |
⊢ ( 𝑤 = 𝑘 → { 𝑙 ∈ 𝐴 ∣ 𝑤 ∈ ⦋ 𝑙 / 𝑥 ⦌ 𝐵 } = { 𝑙 ∈ 𝐴 ∣ 𝑘 ∈ ⦋ 𝑙 / 𝑥 ⦌ 𝐵 } ) |
17 |
14 16
|
eqtrid |
⊢ ( 𝑤 = 𝑘 → { 𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵 } = { 𝑙 ∈ 𝐴 ∣ 𝑘 ∈ ⦋ 𝑙 / 𝑥 ⦌ 𝐵 } ) |
18 |
|
breq1 |
⊢ ( 𝑣 = 𝑛 → ( 𝑣 𝑅 𝑚 ↔ 𝑛 𝑅 𝑚 ) ) |
19 |
18
|
notbid |
⊢ ( 𝑣 = 𝑛 → ( ¬ 𝑣 𝑅 𝑚 ↔ ¬ 𝑛 𝑅 𝑚 ) ) |
20 |
19
|
adantl |
⊢ ( ( 𝑤 = 𝑘 ∧ 𝑣 = 𝑛 ) → ( ¬ 𝑣 𝑅 𝑚 ↔ ¬ 𝑛 𝑅 𝑚 ) ) |
21 |
17
|
adantr |
⊢ ( ( 𝑤 = 𝑘 ∧ 𝑣 = 𝑛 ) → { 𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵 } = { 𝑙 ∈ 𝐴 ∣ 𝑘 ∈ ⦋ 𝑙 / 𝑥 ⦌ 𝐵 } ) |
22 |
20 21
|
cbvraldva2 |
⊢ ( 𝑤 = 𝑘 → ( ∀ 𝑣 ∈ { 𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵 } ¬ 𝑣 𝑅 𝑚 ↔ ∀ 𝑛 ∈ { 𝑙 ∈ 𝐴 ∣ 𝑘 ∈ ⦋ 𝑙 / 𝑥 ⦌ 𝐵 } ¬ 𝑛 𝑅 𝑚 ) ) |
23 |
17 22
|
riotaeqbidv |
⊢ ( 𝑤 = 𝑘 → ( ℩ 𝑚 ∈ { 𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵 } ∀ 𝑣 ∈ { 𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵 } ¬ 𝑣 𝑅 𝑚 ) = ( ℩ 𝑚 ∈ { 𝑙 ∈ 𝐴 ∣ 𝑘 ∈ ⦋ 𝑙 / 𝑥 ⦌ 𝐵 } ∀ 𝑛 ∈ { 𝑙 ∈ 𝐴 ∣ 𝑘 ∈ ⦋ 𝑙 / 𝑥 ⦌ 𝐵 } ¬ 𝑛 𝑅 𝑚 ) ) |
24 |
6 23
|
eqtrid |
⊢ ( 𝑤 = 𝑘 → ( ℩ 𝑢 ∈ { 𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵 } ∀ 𝑣 ∈ { 𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵 } ¬ 𝑣 𝑅 𝑢 ) = ( ℩ 𝑚 ∈ { 𝑙 ∈ 𝐴 ∣ 𝑘 ∈ ⦋ 𝑙 / 𝑥 ⦌ 𝐵 } ∀ 𝑛 ∈ { 𝑙 ∈ 𝐴 ∣ 𝑘 ∈ ⦋ 𝑙 / 𝑥 ⦌ 𝐵 } ¬ 𝑛 𝑅 𝑚 ) ) |
25 |
24
|
cbvmptv |
⊢ ( 𝑤 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↦ ( ℩ 𝑢 ∈ { 𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵 } ∀ 𝑣 ∈ { 𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵 } ¬ 𝑣 𝑅 𝑢 ) ) = ( 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↦ ( ℩ 𝑚 ∈ { 𝑙 ∈ 𝐴 ∣ 𝑘 ∈ ⦋ 𝑙 / 𝑥 ⦌ 𝐵 } ∀ 𝑛 ∈ { 𝑙 ∈ 𝐴 ∣ 𝑘 ∈ ⦋ 𝑙 / 𝑥 ⦌ 𝐵 } ¬ 𝑛 𝑅 𝑚 ) ) |
26 |
|
nfcv |
⊢ Ⅎ 𝑙 𝐵 |
27 |
26 10 12
|
cbviun |
⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑙 ∈ 𝐴 ⦋ 𝑙 / 𝑥 ⦌ 𝐵 |
28 |
27
|
mpteq1i |
⊢ ( 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↦ ( ℩ 𝑚 ∈ { 𝑙 ∈ 𝐴 ∣ 𝑘 ∈ ⦋ 𝑙 / 𝑥 ⦌ 𝐵 } ∀ 𝑛 ∈ { 𝑙 ∈ 𝐴 ∣ 𝑘 ∈ ⦋ 𝑙 / 𝑥 ⦌ 𝐵 } ¬ 𝑛 𝑅 𝑚 ) ) = ( 𝑘 ∈ ∪ 𝑙 ∈ 𝐴 ⦋ 𝑙 / 𝑥 ⦌ 𝐵 ↦ ( ℩ 𝑚 ∈ { 𝑙 ∈ 𝐴 ∣ 𝑘 ∈ ⦋ 𝑙 / 𝑥 ⦌ 𝐵 } ∀ 𝑛 ∈ { 𝑙 ∈ 𝐴 ∣ 𝑘 ∈ ⦋ 𝑙 / 𝑥 ⦌ 𝐵 } ¬ 𝑛 𝑅 𝑚 ) ) |
29 |
1 25 28
|
3eqtri |
⊢ 𝐹 = ( 𝑘 ∈ ∪ 𝑙 ∈ 𝐴 ⦋ 𝑙 / 𝑥 ⦌ 𝐵 ↦ ( ℩ 𝑚 ∈ { 𝑙 ∈ 𝐴 ∣ 𝑘 ∈ ⦋ 𝑙 / 𝑥 ⦌ 𝐵 } ∀ 𝑛 ∈ { 𝑙 ∈ 𝐴 ∣ 𝑘 ∈ ⦋ 𝑙 / 𝑥 ⦌ 𝐵 } ¬ 𝑛 𝑅 𝑚 ) ) |
30 |
|
simpl |
⊢ ( ( 𝑦 = 𝑜 ∧ 𝑧 = 𝑝 ) → 𝑦 = 𝑜 ) |
31 |
27
|
a1i |
⊢ ( ( 𝑦 = 𝑜 ∧ 𝑧 = 𝑝 ) → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑙 ∈ 𝐴 ⦋ 𝑙 / 𝑥 ⦌ 𝐵 ) |
32 |
30 31
|
eleq12d |
⊢ ( ( 𝑦 = 𝑜 ∧ 𝑧 = 𝑝 ) → ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ 𝑜 ∈ ∪ 𝑙 ∈ 𝐴 ⦋ 𝑙 / 𝑥 ⦌ 𝐵 ) ) |
33 |
|
simpr |
⊢ ( ( 𝑦 = 𝑜 ∧ 𝑧 = 𝑝 ) → 𝑧 = 𝑝 ) |
34 |
33 31
|
eleq12d |
⊢ ( ( 𝑦 = 𝑜 ∧ 𝑧 = 𝑝 ) → ( 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ 𝑝 ∈ ∪ 𝑙 ∈ 𝐴 ⦋ 𝑙 / 𝑥 ⦌ 𝐵 ) ) |
35 |
32 34
|
anbi12d |
⊢ ( ( 𝑦 = 𝑜 ∧ 𝑧 = 𝑝 ) → ( ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ↔ ( 𝑜 ∈ ∪ 𝑙 ∈ 𝐴 ⦋ 𝑙 / 𝑥 ⦌ 𝐵 ∧ 𝑝 ∈ ∪ 𝑙 ∈ 𝐴 ⦋ 𝑙 / 𝑥 ⦌ 𝐵 ) ) ) |
36 |
30
|
fveq2d |
⊢ ( ( 𝑦 = 𝑜 ∧ 𝑧 = 𝑝 ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑜 ) ) |
37 |
33
|
fveq2d |
⊢ ( ( 𝑦 = 𝑜 ∧ 𝑧 = 𝑝 ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑝 ) ) |
38 |
36 37
|
breq12d |
⊢ ( ( 𝑦 = 𝑜 ∧ 𝑧 = 𝑝 ) → ( ( 𝐹 ‘ 𝑦 ) 𝑅 ( 𝐹 ‘ 𝑧 ) ↔ ( 𝐹 ‘ 𝑜 ) 𝑅 ( 𝐹 ‘ 𝑝 ) ) ) |
39 |
36 37
|
eqeq12d |
⊢ ( ( 𝑦 = 𝑜 ∧ 𝑧 = 𝑝 ) → ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) ↔ ( 𝐹 ‘ 𝑜 ) = ( 𝐹 ‘ 𝑝 ) ) ) |
40 |
36
|
csbeq1d |
⊢ ( ( 𝑦 = 𝑜 ∧ 𝑧 = 𝑝 ) → ⦋ ( 𝐹 ‘ 𝑦 ) / 𝑥 ⦌ 𝑆 = ⦋ ( 𝐹 ‘ 𝑜 ) / 𝑥 ⦌ 𝑆 ) |
41 |
|
csbcow |
⊢ ⦋ ( 𝐹 ‘ 𝑜 ) / 𝑙 ⦌ ⦋ 𝑙 / 𝑥 ⦌ 𝑆 = ⦋ ( 𝐹 ‘ 𝑜 ) / 𝑥 ⦌ 𝑆 |
42 |
40 41
|
eqtr4di |
⊢ ( ( 𝑦 = 𝑜 ∧ 𝑧 = 𝑝 ) → ⦋ ( 𝐹 ‘ 𝑦 ) / 𝑥 ⦌ 𝑆 = ⦋ ( 𝐹 ‘ 𝑜 ) / 𝑙 ⦌ ⦋ 𝑙 / 𝑥 ⦌ 𝑆 ) |
43 |
30 42 33
|
breq123d |
⊢ ( ( 𝑦 = 𝑜 ∧ 𝑧 = 𝑝 ) → ( 𝑦 ⦋ ( 𝐹 ‘ 𝑦 ) / 𝑥 ⦌ 𝑆 𝑧 ↔ 𝑜 ⦋ ( 𝐹 ‘ 𝑜 ) / 𝑙 ⦌ ⦋ 𝑙 / 𝑥 ⦌ 𝑆 𝑝 ) ) |
44 |
39 43
|
anbi12d |
⊢ ( ( 𝑦 = 𝑜 ∧ 𝑧 = 𝑝 ) → ( ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) ∧ 𝑦 ⦋ ( 𝐹 ‘ 𝑦 ) / 𝑥 ⦌ 𝑆 𝑧 ) ↔ ( ( 𝐹 ‘ 𝑜 ) = ( 𝐹 ‘ 𝑝 ) ∧ 𝑜 ⦋ ( 𝐹 ‘ 𝑜 ) / 𝑙 ⦌ ⦋ 𝑙 / 𝑥 ⦌ 𝑆 𝑝 ) ) ) |
45 |
38 44
|
orbi12d |
⊢ ( ( 𝑦 = 𝑜 ∧ 𝑧 = 𝑝 ) → ( ( ( 𝐹 ‘ 𝑦 ) 𝑅 ( 𝐹 ‘ 𝑧 ) ∨ ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) ∧ 𝑦 ⦋ ( 𝐹 ‘ 𝑦 ) / 𝑥 ⦌ 𝑆 𝑧 ) ) ↔ ( ( 𝐹 ‘ 𝑜 ) 𝑅 ( 𝐹 ‘ 𝑝 ) ∨ ( ( 𝐹 ‘ 𝑜 ) = ( 𝐹 ‘ 𝑝 ) ∧ 𝑜 ⦋ ( 𝐹 ‘ 𝑜 ) / 𝑙 ⦌ ⦋ 𝑙 / 𝑥 ⦌ 𝑆 𝑝 ) ) ) ) |
46 |
35 45
|
anbi12d |
⊢ ( ( 𝑦 = 𝑜 ∧ 𝑧 = 𝑝 ) → ( ( ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ∧ ( ( 𝐹 ‘ 𝑦 ) 𝑅 ( 𝐹 ‘ 𝑧 ) ∨ ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) ∧ 𝑦 ⦋ ( 𝐹 ‘ 𝑦 ) / 𝑥 ⦌ 𝑆 𝑧 ) ) ) ↔ ( ( 𝑜 ∈ ∪ 𝑙 ∈ 𝐴 ⦋ 𝑙 / 𝑥 ⦌ 𝐵 ∧ 𝑝 ∈ ∪ 𝑙 ∈ 𝐴 ⦋ 𝑙 / 𝑥 ⦌ 𝐵 ) ∧ ( ( 𝐹 ‘ 𝑜 ) 𝑅 ( 𝐹 ‘ 𝑝 ) ∨ ( ( 𝐹 ‘ 𝑜 ) = ( 𝐹 ‘ 𝑝 ) ∧ 𝑜 ⦋ ( 𝐹 ‘ 𝑜 ) / 𝑙 ⦌ ⦋ 𝑙 / 𝑥 ⦌ 𝑆 𝑝 ) ) ) ) ) |
47 |
46
|
cbvopabv |
⊢ { 〈 𝑦 , 𝑧 〉 ∣ ( ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ∧ ( ( 𝐹 ‘ 𝑦 ) 𝑅 ( 𝐹 ‘ 𝑧 ) ∨ ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) ∧ 𝑦 ⦋ ( 𝐹 ‘ 𝑦 ) / 𝑥 ⦌ 𝑆 𝑧 ) ) ) } = { 〈 𝑜 , 𝑝 〉 ∣ ( ( 𝑜 ∈ ∪ 𝑙 ∈ 𝐴 ⦋ 𝑙 / 𝑥 ⦌ 𝐵 ∧ 𝑝 ∈ ∪ 𝑙 ∈ 𝐴 ⦋ 𝑙 / 𝑥 ⦌ 𝐵 ) ∧ ( ( 𝐹 ‘ 𝑜 ) 𝑅 ( 𝐹 ‘ 𝑝 ) ∨ ( ( 𝐹 ‘ 𝑜 ) = ( 𝐹 ‘ 𝑝 ) ∧ 𝑜 ⦋ ( 𝐹 ‘ 𝑜 ) / 𝑙 ⦌ ⦋ 𝑙 / 𝑥 ⦌ 𝑆 𝑝 ) ) ) } |
48 |
2 47
|
eqtri |
⊢ 𝑇 = { 〈 𝑜 , 𝑝 〉 ∣ ( ( 𝑜 ∈ ∪ 𝑙 ∈ 𝐴 ⦋ 𝑙 / 𝑥 ⦌ 𝐵 ∧ 𝑝 ∈ ∪ 𝑙 ∈ 𝐴 ⦋ 𝑙 / 𝑥 ⦌ 𝐵 ) ∧ ( ( 𝐹 ‘ 𝑜 ) 𝑅 ( 𝐹 ‘ 𝑝 ) ∨ ( ( 𝐹 ‘ 𝑜 ) = ( 𝐹 ‘ 𝑝 ) ∧ 𝑜 ⦋ ( 𝐹 ‘ 𝑜 ) / 𝑙 ⦌ ⦋ 𝑙 / 𝑥 ⦌ 𝑆 𝑝 ) ) ) } |
49 |
|
breq1 |
⊢ ( 𝑞 = 𝑡 → ( 𝑞 𝑅 𝑠 ↔ 𝑡 𝑅 𝑠 ) ) |
50 |
49
|
notbid |
⊢ ( 𝑞 = 𝑡 → ( ¬ 𝑞 𝑅 𝑠 ↔ ¬ 𝑡 𝑅 𝑠 ) ) |
51 |
50
|
cbvralvw |
⊢ ( ∀ 𝑞 ∈ ( 𝐹 “ 𝑟 ) ¬ 𝑞 𝑅 𝑠 ↔ ∀ 𝑡 ∈ ( 𝐹 “ 𝑟 ) ¬ 𝑡 𝑅 𝑠 ) |
52 |
51
|
a1i |
⊢ ( 𝑠 ∈ ( 𝐹 “ 𝑟 ) → ( ∀ 𝑞 ∈ ( 𝐹 “ 𝑟 ) ¬ 𝑞 𝑅 𝑠 ↔ ∀ 𝑡 ∈ ( 𝐹 “ 𝑟 ) ¬ 𝑡 𝑅 𝑠 ) ) |
53 |
52
|
riotabiia |
⊢ ( ℩ 𝑠 ∈ ( 𝐹 “ 𝑟 ) ∀ 𝑞 ∈ ( 𝐹 “ 𝑟 ) ¬ 𝑞 𝑅 𝑠 ) = ( ℩ 𝑠 ∈ ( 𝐹 “ 𝑟 ) ∀ 𝑡 ∈ ( 𝐹 “ 𝑟 ) ¬ 𝑡 𝑅 𝑠 ) |
54 |
29 48 53
|
weiunfrlem2 |
⊢ ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑙 ∈ 𝐴 ⦋ 𝑙 / 𝑥 ⦌ 𝑆 Fr ⦋ 𝑙 / 𝑥 ⦌ 𝐵 ) → 𝑇 Fr ∪ 𝑙 ∈ 𝐴 ⦋ 𝑙 / 𝑥 ⦌ 𝐵 ) |
55 |
|
nfv |
⊢ Ⅎ 𝑙 𝑆 Fr 𝐵 |
56 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑙 / 𝑥 ⦌ 𝑆 |
57 |
56 10
|
nffr |
⊢ Ⅎ 𝑥 ⦋ 𝑙 / 𝑥 ⦌ 𝑆 Fr ⦋ 𝑙 / 𝑥 ⦌ 𝐵 |
58 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑙 → 𝑆 = ⦋ 𝑙 / 𝑥 ⦌ 𝑆 ) |
59 |
|
freq1 |
⊢ ( 𝑆 = ⦋ 𝑙 / 𝑥 ⦌ 𝑆 → ( 𝑆 Fr 𝐵 ↔ ⦋ 𝑙 / 𝑥 ⦌ 𝑆 Fr 𝐵 ) ) |
60 |
58 59
|
syl |
⊢ ( 𝑥 = 𝑙 → ( 𝑆 Fr 𝐵 ↔ ⦋ 𝑙 / 𝑥 ⦌ 𝑆 Fr 𝐵 ) ) |
61 |
|
freq2 |
⊢ ( 𝐵 = ⦋ 𝑙 / 𝑥 ⦌ 𝐵 → ( ⦋ 𝑙 / 𝑥 ⦌ 𝑆 Fr 𝐵 ↔ ⦋ 𝑙 / 𝑥 ⦌ 𝑆 Fr ⦋ 𝑙 / 𝑥 ⦌ 𝐵 ) ) |
62 |
12 61
|
syl |
⊢ ( 𝑥 = 𝑙 → ( ⦋ 𝑙 / 𝑥 ⦌ 𝑆 Fr 𝐵 ↔ ⦋ 𝑙 / 𝑥 ⦌ 𝑆 Fr ⦋ 𝑙 / 𝑥 ⦌ 𝐵 ) ) |
63 |
60 62
|
bitrd |
⊢ ( 𝑥 = 𝑙 → ( 𝑆 Fr 𝐵 ↔ ⦋ 𝑙 / 𝑥 ⦌ 𝑆 Fr ⦋ 𝑙 / 𝑥 ⦌ 𝐵 ) ) |
64 |
55 57 63
|
cbvralw |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝑆 Fr 𝐵 ↔ ∀ 𝑙 ∈ 𝐴 ⦋ 𝑙 / 𝑥 ⦌ 𝑆 Fr ⦋ 𝑙 / 𝑥 ⦌ 𝐵 ) |
65 |
64
|
3anbi3i |
⊢ ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 Fr 𝐵 ) ↔ ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑙 ∈ 𝐴 ⦋ 𝑙 / 𝑥 ⦌ 𝑆 Fr ⦋ 𝑙 / 𝑥 ⦌ 𝐵 ) ) |
66 |
|
freq2 |
⊢ ( ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑙 ∈ 𝐴 ⦋ 𝑙 / 𝑥 ⦌ 𝐵 → ( 𝑇 Fr ∪ 𝑥 ∈ 𝐴 𝐵 ↔ 𝑇 Fr ∪ 𝑙 ∈ 𝐴 ⦋ 𝑙 / 𝑥 ⦌ 𝐵 ) ) |
67 |
27 66
|
ax-mp |
⊢ ( 𝑇 Fr ∪ 𝑥 ∈ 𝐴 𝐵 ↔ 𝑇 Fr ∪ 𝑙 ∈ 𝐴 ⦋ 𝑙 / 𝑥 ⦌ 𝐵 ) |
68 |
54 65 67
|
3imtr4i |
⊢ ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 Fr 𝐵 ) → 𝑇 Fr ∪ 𝑥 ∈ 𝐴 𝐵 ) |