Step |
Hyp |
Ref |
Expression |
1 |
|
weiun.1 |
⊢ 𝐹 = ( 𝑤 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↦ ( ℩ 𝑢 ∈ { 𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵 } ∀ 𝑣 ∈ { 𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵 } ¬ 𝑣 𝑅 𝑢 ) ) |
2 |
|
weiun.2 |
⊢ 𝑇 = { 〈 𝑦 , 𝑧 〉 ∣ ( ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ∧ ( ( 𝐹 ‘ 𝑦 ) 𝑅 ( 𝐹 ‘ 𝑧 ) ∨ ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) ∧ 𝑦 ⦋ ( 𝐹 ‘ 𝑦 ) / 𝑥 ⦌ 𝑆 𝑧 ) ) ) } |
3 |
|
weiunlem2.3 |
⊢ ( 𝜑 → 𝑅 We 𝐴 ) |
4 |
|
weiunlem2.4 |
⊢ ( 𝜑 → 𝑅 Se 𝐴 ) |
5 |
|
weiunfrlem.5 |
⊢ 𝐸 = ( ℩ 𝑝 ∈ ( 𝐹 “ 𝑟 ) ∀ 𝑞 ∈ ( 𝐹 “ 𝑟 ) ¬ 𝑞 𝑅 𝑝 ) |
6 |
|
weiunfrlem.6 |
⊢ ( 𝜑 → 𝑟 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
7 |
|
weiunfrlem.7 |
⊢ ( 𝜑 → 𝑟 ≠ ∅ ) |
8 |
1 2 3 4
|
weiunlem2 |
⊢ ( 𝜑 → ( 𝐹 : ∪ 𝑥 ∈ 𝐴 𝐵 ⟶ 𝐴 ∧ ∀ 𝑡 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 𝑡 ∈ ⦋ ( 𝐹 ‘ 𝑡 ) / 𝑥 ⦌ 𝐵 ∧ ∀ 𝑠 ∈ 𝐴 ∀ 𝑡 ∈ ⦋ 𝑠 / 𝑥 ⦌ 𝐵 ¬ 𝑠 𝑅 ( 𝐹 ‘ 𝑡 ) ) ) |
9 |
8
|
simp1d |
⊢ ( 𝜑 → 𝐹 : ∪ 𝑥 ∈ 𝐴 𝐵 ⟶ 𝐴 ) |
10 |
9
|
fimassd |
⊢ ( 𝜑 → ( 𝐹 “ 𝑟 ) ⊆ 𝐴 ) |
11 |
9
|
fdmd |
⊢ ( 𝜑 → dom 𝐹 = ∪ 𝑥 ∈ 𝐴 𝐵 ) |
12 |
6 11
|
sseqtrrd |
⊢ ( 𝜑 → 𝑟 ⊆ dom 𝐹 ) |
13 |
|
sseqin2 |
⊢ ( 𝑟 ⊆ dom 𝐹 ↔ ( dom 𝐹 ∩ 𝑟 ) = 𝑟 ) |
14 |
12 13
|
sylib |
⊢ ( 𝜑 → ( dom 𝐹 ∩ 𝑟 ) = 𝑟 ) |
15 |
14 7
|
eqnetrd |
⊢ ( 𝜑 → ( dom 𝐹 ∩ 𝑟 ) ≠ ∅ ) |
16 |
15
|
imadisjlnd |
⊢ ( 𝜑 → ( 𝐹 “ 𝑟 ) ≠ ∅ ) |
17 |
|
wereu2 |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( ( 𝐹 “ 𝑟 ) ⊆ 𝐴 ∧ ( 𝐹 “ 𝑟 ) ≠ ∅ ) ) → ∃! 𝑝 ∈ ( 𝐹 “ 𝑟 ) ∀ 𝑞 ∈ ( 𝐹 “ 𝑟 ) ¬ 𝑞 𝑅 𝑝 ) |
18 |
3 4 10 16 17
|
syl22anc |
⊢ ( 𝜑 → ∃! 𝑝 ∈ ( 𝐹 “ 𝑟 ) ∀ 𝑞 ∈ ( 𝐹 “ 𝑟 ) ¬ 𝑞 𝑅 𝑝 ) |
19 |
|
riotacl2 |
⊢ ( ∃! 𝑝 ∈ ( 𝐹 “ 𝑟 ) ∀ 𝑞 ∈ ( 𝐹 “ 𝑟 ) ¬ 𝑞 𝑅 𝑝 → ( ℩ 𝑝 ∈ ( 𝐹 “ 𝑟 ) ∀ 𝑞 ∈ ( 𝐹 “ 𝑟 ) ¬ 𝑞 𝑅 𝑝 ) ∈ { 𝑝 ∈ ( 𝐹 “ 𝑟 ) ∣ ∀ 𝑞 ∈ ( 𝐹 “ 𝑟 ) ¬ 𝑞 𝑅 𝑝 } ) |
20 |
18 19
|
syl |
⊢ ( 𝜑 → ( ℩ 𝑝 ∈ ( 𝐹 “ 𝑟 ) ∀ 𝑞 ∈ ( 𝐹 “ 𝑟 ) ¬ 𝑞 𝑅 𝑝 ) ∈ { 𝑝 ∈ ( 𝐹 “ 𝑟 ) ∣ ∀ 𝑞 ∈ ( 𝐹 “ 𝑟 ) ¬ 𝑞 𝑅 𝑝 } ) |
21 |
|
simpr |
⊢ ( ( 𝑛 = 𝑝 ∧ 𝑜 = 𝑞 ) → 𝑜 = 𝑞 ) |
22 |
|
simpl |
⊢ ( ( 𝑛 = 𝑝 ∧ 𝑜 = 𝑞 ) → 𝑛 = 𝑝 ) |
23 |
21 22
|
breq12d |
⊢ ( ( 𝑛 = 𝑝 ∧ 𝑜 = 𝑞 ) → ( 𝑜 𝑅 𝑛 ↔ 𝑞 𝑅 𝑝 ) ) |
24 |
23
|
notbid |
⊢ ( ( 𝑛 = 𝑝 ∧ 𝑜 = 𝑞 ) → ( ¬ 𝑜 𝑅 𝑛 ↔ ¬ 𝑞 𝑅 𝑝 ) ) |
25 |
24
|
cbvraldva |
⊢ ( 𝑛 = 𝑝 → ( ∀ 𝑜 ∈ ( 𝐹 “ 𝑟 ) ¬ 𝑜 𝑅 𝑛 ↔ ∀ 𝑞 ∈ ( 𝐹 “ 𝑟 ) ¬ 𝑞 𝑅 𝑝 ) ) |
26 |
25
|
cbvrabv |
⊢ { 𝑛 ∈ ( 𝐹 “ 𝑟 ) ∣ ∀ 𝑜 ∈ ( 𝐹 “ 𝑟 ) ¬ 𝑜 𝑅 𝑛 } = { 𝑝 ∈ ( 𝐹 “ 𝑟 ) ∣ ∀ 𝑞 ∈ ( 𝐹 “ 𝑟 ) ¬ 𝑞 𝑅 𝑝 } |
27 |
20 5 26
|
3eltr4g |
⊢ ( 𝜑 → 𝐸 ∈ { 𝑛 ∈ ( 𝐹 “ 𝑟 ) ∣ ∀ 𝑜 ∈ ( 𝐹 “ 𝑟 ) ¬ 𝑜 𝑅 𝑛 } ) |
28 |
|
breq2 |
⊢ ( 𝑛 = 𝐸 → ( 𝑜 𝑅 𝑛 ↔ 𝑜 𝑅 𝐸 ) ) |
29 |
28
|
notbid |
⊢ ( 𝑛 = 𝐸 → ( ¬ 𝑜 𝑅 𝑛 ↔ ¬ 𝑜 𝑅 𝐸 ) ) |
30 |
29
|
ralbidv |
⊢ ( 𝑛 = 𝐸 → ( ∀ 𝑜 ∈ ( 𝐹 “ 𝑟 ) ¬ 𝑜 𝑅 𝑛 ↔ ∀ 𝑜 ∈ ( 𝐹 “ 𝑟 ) ¬ 𝑜 𝑅 𝐸 ) ) |
31 |
30
|
elrab |
⊢ ( 𝐸 ∈ { 𝑛 ∈ ( 𝐹 “ 𝑟 ) ∣ ∀ 𝑜 ∈ ( 𝐹 “ 𝑟 ) ¬ 𝑜 𝑅 𝑛 } ↔ ( 𝐸 ∈ ( 𝐹 “ 𝑟 ) ∧ ∀ 𝑜 ∈ ( 𝐹 “ 𝑟 ) ¬ 𝑜 𝑅 𝐸 ) ) |
32 |
27 31
|
sylib |
⊢ ( 𝜑 → ( 𝐸 ∈ ( 𝐹 “ 𝑟 ) ∧ ∀ 𝑜 ∈ ( 𝐹 “ 𝑟 ) ¬ 𝑜 𝑅 𝐸 ) ) |
33 |
32
|
simpld |
⊢ ( 𝜑 → 𝐸 ∈ ( 𝐹 “ 𝑟 ) ) |
34 |
32
|
simprd |
⊢ ( 𝜑 → ∀ 𝑜 ∈ ( 𝐹 “ 𝑟 ) ¬ 𝑜 𝑅 𝐸 ) |
35 |
9
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn ∪ 𝑥 ∈ 𝐴 𝐵 ) |
36 |
|
breq1 |
⊢ ( 𝑜 = ( 𝐹 ‘ 𝑡 ) → ( 𝑜 𝑅 𝐸 ↔ ( 𝐹 ‘ 𝑡 ) 𝑅 𝐸 ) ) |
37 |
36
|
notbid |
⊢ ( 𝑜 = ( 𝐹 ‘ 𝑡 ) → ( ¬ 𝑜 𝑅 𝐸 ↔ ¬ ( 𝐹 ‘ 𝑡 ) 𝑅 𝐸 ) ) |
38 |
37
|
ralima |
⊢ ( ( 𝐹 Fn ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ) → ( ∀ 𝑜 ∈ ( 𝐹 “ 𝑟 ) ¬ 𝑜 𝑅 𝐸 ↔ ∀ 𝑡 ∈ 𝑟 ¬ ( 𝐹 ‘ 𝑡 ) 𝑅 𝐸 ) ) |
39 |
35 6 38
|
syl2anc |
⊢ ( 𝜑 → ( ∀ 𝑜 ∈ ( 𝐹 “ 𝑟 ) ¬ 𝑜 𝑅 𝐸 ↔ ∀ 𝑡 ∈ 𝑟 ¬ ( 𝐹 ‘ 𝑡 ) 𝑅 𝐸 ) ) |
40 |
34 39
|
mpbid |
⊢ ( 𝜑 → ∀ 𝑡 ∈ 𝑟 ¬ ( 𝐹 ‘ 𝑡 ) 𝑅 𝐸 ) |
41 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝑟 ∩ ⦋ 𝐸 / 𝑥 ⦌ 𝐵 ) ) → 𝑡 ∈ ( 𝑟 ∩ ⦋ 𝐸 / 𝑥 ⦌ 𝐵 ) ) |
42 |
41
|
elin1d |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝑟 ∩ ⦋ 𝐸 / 𝑥 ⦌ 𝐵 ) ) → 𝑡 ∈ 𝑟 ) |
43 |
|
rspa |
⊢ ( ( ∀ 𝑡 ∈ 𝑟 ¬ ( 𝐹 ‘ 𝑡 ) 𝑅 𝐸 ∧ 𝑡 ∈ 𝑟 ) → ¬ ( 𝐹 ‘ 𝑡 ) 𝑅 𝐸 ) |
44 |
40 42 43
|
syl2an2r |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝑟 ∩ ⦋ 𝐸 / 𝑥 ⦌ 𝐵 ) ) → ¬ ( 𝐹 ‘ 𝑡 ) 𝑅 𝐸 ) |
45 |
|
csbeq1 |
⊢ ( 𝑠 = 𝐸 → ⦋ 𝑠 / 𝑥 ⦌ 𝐵 = ⦋ 𝐸 / 𝑥 ⦌ 𝐵 ) |
46 |
|
breq1 |
⊢ ( 𝑠 = 𝐸 → ( 𝑠 𝑅 ( 𝐹 ‘ 𝑡 ) ↔ 𝐸 𝑅 ( 𝐹 ‘ 𝑡 ) ) ) |
47 |
46
|
notbid |
⊢ ( 𝑠 = 𝐸 → ( ¬ 𝑠 𝑅 ( 𝐹 ‘ 𝑡 ) ↔ ¬ 𝐸 𝑅 ( 𝐹 ‘ 𝑡 ) ) ) |
48 |
45 47
|
raleqbidv |
⊢ ( 𝑠 = 𝐸 → ( ∀ 𝑡 ∈ ⦋ 𝑠 / 𝑥 ⦌ 𝐵 ¬ 𝑠 𝑅 ( 𝐹 ‘ 𝑡 ) ↔ ∀ 𝑡 ∈ ⦋ 𝐸 / 𝑥 ⦌ 𝐵 ¬ 𝐸 𝑅 ( 𝐹 ‘ 𝑡 ) ) ) |
49 |
8
|
simp3d |
⊢ ( 𝜑 → ∀ 𝑠 ∈ 𝐴 ∀ 𝑡 ∈ ⦋ 𝑠 / 𝑥 ⦌ 𝐵 ¬ 𝑠 𝑅 ( 𝐹 ‘ 𝑡 ) ) |
50 |
10 33
|
sseldd |
⊢ ( 𝜑 → 𝐸 ∈ 𝐴 ) |
51 |
48 49 50
|
rspcdva |
⊢ ( 𝜑 → ∀ 𝑡 ∈ ⦋ 𝐸 / 𝑥 ⦌ 𝐵 ¬ 𝐸 𝑅 ( 𝐹 ‘ 𝑡 ) ) |
52 |
41
|
elin2d |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝑟 ∩ ⦋ 𝐸 / 𝑥 ⦌ 𝐵 ) ) → 𝑡 ∈ ⦋ 𝐸 / 𝑥 ⦌ 𝐵 ) |
53 |
|
rspa |
⊢ ( ( ∀ 𝑡 ∈ ⦋ 𝐸 / 𝑥 ⦌ 𝐵 ¬ 𝐸 𝑅 ( 𝐹 ‘ 𝑡 ) ∧ 𝑡 ∈ ⦋ 𝐸 / 𝑥 ⦌ 𝐵 ) → ¬ 𝐸 𝑅 ( 𝐹 ‘ 𝑡 ) ) |
54 |
51 52 53
|
syl2an2r |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝑟 ∩ ⦋ 𝐸 / 𝑥 ⦌ 𝐵 ) ) → ¬ 𝐸 𝑅 ( 𝐹 ‘ 𝑡 ) ) |
55 |
|
weso |
⊢ ( 𝑅 We 𝐴 → 𝑅 Or 𝐴 ) |
56 |
3 55
|
syl |
⊢ ( 𝜑 → 𝑅 Or 𝐴 ) |
57 |
56
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝑟 ∩ ⦋ 𝐸 / 𝑥 ⦌ 𝐵 ) ) → 𝑅 Or 𝐴 ) |
58 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝑟 ∩ ⦋ 𝐸 / 𝑥 ⦌ 𝐵 ) ) → 𝐹 : ∪ 𝑥 ∈ 𝐴 𝐵 ⟶ 𝐴 ) |
59 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝑟 ∩ ⦋ 𝐸 / 𝑥 ⦌ 𝐵 ) ) → 𝑟 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
60 |
59 42
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝑟 ∩ ⦋ 𝐸 / 𝑥 ⦌ 𝐵 ) ) → 𝑡 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
61 |
58 60
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝑟 ∩ ⦋ 𝐸 / 𝑥 ⦌ 𝐵 ) ) → ( 𝐹 ‘ 𝑡 ) ∈ 𝐴 ) |
62 |
50
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝑟 ∩ ⦋ 𝐸 / 𝑥 ⦌ 𝐵 ) ) → 𝐸 ∈ 𝐴 ) |
63 |
|
sotrieq2 |
⊢ ( ( 𝑅 Or 𝐴 ∧ ( ( 𝐹 ‘ 𝑡 ) ∈ 𝐴 ∧ 𝐸 ∈ 𝐴 ) ) → ( ( 𝐹 ‘ 𝑡 ) = 𝐸 ↔ ( ¬ ( 𝐹 ‘ 𝑡 ) 𝑅 𝐸 ∧ ¬ 𝐸 𝑅 ( 𝐹 ‘ 𝑡 ) ) ) ) |
64 |
57 61 62 63
|
syl12anc |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝑟 ∩ ⦋ 𝐸 / 𝑥 ⦌ 𝐵 ) ) → ( ( 𝐹 ‘ 𝑡 ) = 𝐸 ↔ ( ¬ ( 𝐹 ‘ 𝑡 ) 𝑅 𝐸 ∧ ¬ 𝐸 𝑅 ( 𝐹 ‘ 𝑡 ) ) ) ) |
65 |
44 54 64
|
mpbir2and |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝑟 ∩ ⦋ 𝐸 / 𝑥 ⦌ 𝐵 ) ) → ( 𝐹 ‘ 𝑡 ) = 𝐸 ) |
66 |
65
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑡 ∈ ( 𝑟 ∩ ⦋ 𝐸 / 𝑥 ⦌ 𝐵 ) ( 𝐹 ‘ 𝑡 ) = 𝐸 ) |
67 |
33 40 66
|
3jca |
⊢ ( 𝜑 → ( 𝐸 ∈ ( 𝐹 “ 𝑟 ) ∧ ∀ 𝑡 ∈ 𝑟 ¬ ( 𝐹 ‘ 𝑡 ) 𝑅 𝐸 ∧ ∀ 𝑡 ∈ ( 𝑟 ∩ ⦋ 𝐸 / 𝑥 ⦌ 𝐵 ) ( 𝐹 ‘ 𝑡 ) = 𝐸 ) ) |