Metamath Proof Explorer


Theorem weiunfrlem

Description: Lemma for weiunfr . (Contributed by Matthew House, 23-Aug-2025)

Ref Expression
Hypotheses weiun.1 𝐹 = ( 𝑤 𝑥𝐴 𝐵 ↦ ( 𝑢 ∈ { 𝑥𝐴𝑤𝐵 } ∀ 𝑣 ∈ { 𝑥𝐴𝑤𝐵 } ¬ 𝑣 𝑅 𝑢 ) )
weiun.2 𝑇 = { ⟨ 𝑦 , 𝑧 ⟩ ∣ ( ( 𝑦 𝑥𝐴 𝐵𝑧 𝑥𝐴 𝐵 ) ∧ ( ( 𝐹𝑦 ) 𝑅 ( 𝐹𝑧 ) ∨ ( ( 𝐹𝑦 ) = ( 𝐹𝑧 ) ∧ 𝑦 ( 𝐹𝑦 ) / 𝑥 𝑆 𝑧 ) ) ) }
weiunlem2.3 ( 𝜑𝑅 We 𝐴 )
weiunlem2.4 ( 𝜑𝑅 Se 𝐴 )
weiunfrlem.5 𝐸 = ( 𝑝 ∈ ( 𝐹𝑟 ) ∀ 𝑞 ∈ ( 𝐹𝑟 ) ¬ 𝑞 𝑅 𝑝 )
weiunfrlem.6 ( 𝜑𝑟 𝑥𝐴 𝐵 )
weiunfrlem.7 ( 𝜑𝑟 ≠ ∅ )
Assertion weiunfrlem ( 𝜑 → ( 𝐸 ∈ ( 𝐹𝑟 ) ∧ ∀ 𝑡𝑟 ¬ ( 𝐹𝑡 ) 𝑅 𝐸 ∧ ∀ 𝑡 ∈ ( 𝑟 𝐸 / 𝑥 𝐵 ) ( 𝐹𝑡 ) = 𝐸 ) )

Proof

Step Hyp Ref Expression
1 weiun.1 𝐹 = ( 𝑤 𝑥𝐴 𝐵 ↦ ( 𝑢 ∈ { 𝑥𝐴𝑤𝐵 } ∀ 𝑣 ∈ { 𝑥𝐴𝑤𝐵 } ¬ 𝑣 𝑅 𝑢 ) )
2 weiun.2 𝑇 = { ⟨ 𝑦 , 𝑧 ⟩ ∣ ( ( 𝑦 𝑥𝐴 𝐵𝑧 𝑥𝐴 𝐵 ) ∧ ( ( 𝐹𝑦 ) 𝑅 ( 𝐹𝑧 ) ∨ ( ( 𝐹𝑦 ) = ( 𝐹𝑧 ) ∧ 𝑦 ( 𝐹𝑦 ) / 𝑥 𝑆 𝑧 ) ) ) }
3 weiunlem2.3 ( 𝜑𝑅 We 𝐴 )
4 weiunlem2.4 ( 𝜑𝑅 Se 𝐴 )
5 weiunfrlem.5 𝐸 = ( 𝑝 ∈ ( 𝐹𝑟 ) ∀ 𝑞 ∈ ( 𝐹𝑟 ) ¬ 𝑞 𝑅 𝑝 )
6 weiunfrlem.6 ( 𝜑𝑟 𝑥𝐴 𝐵 )
7 weiunfrlem.7 ( 𝜑𝑟 ≠ ∅ )
8 1 2 3 4 weiunlem2 ( 𝜑 → ( 𝐹 : 𝑥𝐴 𝐵𝐴 ∧ ∀ 𝑡 𝑥𝐴 𝐵 𝑡 ( 𝐹𝑡 ) / 𝑥 𝐵 ∧ ∀ 𝑠𝐴𝑡 𝑠 / 𝑥 𝐵 ¬ 𝑠 𝑅 ( 𝐹𝑡 ) ) )
9 8 simp1d ( 𝜑𝐹 : 𝑥𝐴 𝐵𝐴 )
10 9 fimassd ( 𝜑 → ( 𝐹𝑟 ) ⊆ 𝐴 )
11 9 fdmd ( 𝜑 → dom 𝐹 = 𝑥𝐴 𝐵 )
12 6 11 sseqtrrd ( 𝜑𝑟 ⊆ dom 𝐹 )
13 sseqin2 ( 𝑟 ⊆ dom 𝐹 ↔ ( dom 𝐹𝑟 ) = 𝑟 )
14 12 13 sylib ( 𝜑 → ( dom 𝐹𝑟 ) = 𝑟 )
15 14 7 eqnetrd ( 𝜑 → ( dom 𝐹𝑟 ) ≠ ∅ )
16 15 imadisjlnd ( 𝜑 → ( 𝐹𝑟 ) ≠ ∅ )
17 wereu2 ( ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ) ∧ ( ( 𝐹𝑟 ) ⊆ 𝐴 ∧ ( 𝐹𝑟 ) ≠ ∅ ) ) → ∃! 𝑝 ∈ ( 𝐹𝑟 ) ∀ 𝑞 ∈ ( 𝐹𝑟 ) ¬ 𝑞 𝑅 𝑝 )
18 3 4 10 16 17 syl22anc ( 𝜑 → ∃! 𝑝 ∈ ( 𝐹𝑟 ) ∀ 𝑞 ∈ ( 𝐹𝑟 ) ¬ 𝑞 𝑅 𝑝 )
19 riotacl2 ( ∃! 𝑝 ∈ ( 𝐹𝑟 ) ∀ 𝑞 ∈ ( 𝐹𝑟 ) ¬ 𝑞 𝑅 𝑝 → ( 𝑝 ∈ ( 𝐹𝑟 ) ∀ 𝑞 ∈ ( 𝐹𝑟 ) ¬ 𝑞 𝑅 𝑝 ) ∈ { 𝑝 ∈ ( 𝐹𝑟 ) ∣ ∀ 𝑞 ∈ ( 𝐹𝑟 ) ¬ 𝑞 𝑅 𝑝 } )
20 18 19 syl ( 𝜑 → ( 𝑝 ∈ ( 𝐹𝑟 ) ∀ 𝑞 ∈ ( 𝐹𝑟 ) ¬ 𝑞 𝑅 𝑝 ) ∈ { 𝑝 ∈ ( 𝐹𝑟 ) ∣ ∀ 𝑞 ∈ ( 𝐹𝑟 ) ¬ 𝑞 𝑅 𝑝 } )
21 simpr ( ( 𝑛 = 𝑝𝑜 = 𝑞 ) → 𝑜 = 𝑞 )
22 simpl ( ( 𝑛 = 𝑝𝑜 = 𝑞 ) → 𝑛 = 𝑝 )
23 21 22 breq12d ( ( 𝑛 = 𝑝𝑜 = 𝑞 ) → ( 𝑜 𝑅 𝑛𝑞 𝑅 𝑝 ) )
24 23 notbid ( ( 𝑛 = 𝑝𝑜 = 𝑞 ) → ( ¬ 𝑜 𝑅 𝑛 ↔ ¬ 𝑞 𝑅 𝑝 ) )
25 24 cbvraldva ( 𝑛 = 𝑝 → ( ∀ 𝑜 ∈ ( 𝐹𝑟 ) ¬ 𝑜 𝑅 𝑛 ↔ ∀ 𝑞 ∈ ( 𝐹𝑟 ) ¬ 𝑞 𝑅 𝑝 ) )
26 25 cbvrabv { 𝑛 ∈ ( 𝐹𝑟 ) ∣ ∀ 𝑜 ∈ ( 𝐹𝑟 ) ¬ 𝑜 𝑅 𝑛 } = { 𝑝 ∈ ( 𝐹𝑟 ) ∣ ∀ 𝑞 ∈ ( 𝐹𝑟 ) ¬ 𝑞 𝑅 𝑝 }
27 20 5 26 3eltr4g ( 𝜑𝐸 ∈ { 𝑛 ∈ ( 𝐹𝑟 ) ∣ ∀ 𝑜 ∈ ( 𝐹𝑟 ) ¬ 𝑜 𝑅 𝑛 } )
28 breq2 ( 𝑛 = 𝐸 → ( 𝑜 𝑅 𝑛𝑜 𝑅 𝐸 ) )
29 28 notbid ( 𝑛 = 𝐸 → ( ¬ 𝑜 𝑅 𝑛 ↔ ¬ 𝑜 𝑅 𝐸 ) )
30 29 ralbidv ( 𝑛 = 𝐸 → ( ∀ 𝑜 ∈ ( 𝐹𝑟 ) ¬ 𝑜 𝑅 𝑛 ↔ ∀ 𝑜 ∈ ( 𝐹𝑟 ) ¬ 𝑜 𝑅 𝐸 ) )
31 30 elrab ( 𝐸 ∈ { 𝑛 ∈ ( 𝐹𝑟 ) ∣ ∀ 𝑜 ∈ ( 𝐹𝑟 ) ¬ 𝑜 𝑅 𝑛 } ↔ ( 𝐸 ∈ ( 𝐹𝑟 ) ∧ ∀ 𝑜 ∈ ( 𝐹𝑟 ) ¬ 𝑜 𝑅 𝐸 ) )
32 27 31 sylib ( 𝜑 → ( 𝐸 ∈ ( 𝐹𝑟 ) ∧ ∀ 𝑜 ∈ ( 𝐹𝑟 ) ¬ 𝑜 𝑅 𝐸 ) )
33 32 simpld ( 𝜑𝐸 ∈ ( 𝐹𝑟 ) )
34 32 simprd ( 𝜑 → ∀ 𝑜 ∈ ( 𝐹𝑟 ) ¬ 𝑜 𝑅 𝐸 )
35 9 ffnd ( 𝜑𝐹 Fn 𝑥𝐴 𝐵 )
36 breq1 ( 𝑜 = ( 𝐹𝑡 ) → ( 𝑜 𝑅 𝐸 ↔ ( 𝐹𝑡 ) 𝑅 𝐸 ) )
37 36 notbid ( 𝑜 = ( 𝐹𝑡 ) → ( ¬ 𝑜 𝑅 𝐸 ↔ ¬ ( 𝐹𝑡 ) 𝑅 𝐸 ) )
38 37 ralima ( ( 𝐹 Fn 𝑥𝐴 𝐵𝑟 𝑥𝐴 𝐵 ) → ( ∀ 𝑜 ∈ ( 𝐹𝑟 ) ¬ 𝑜 𝑅 𝐸 ↔ ∀ 𝑡𝑟 ¬ ( 𝐹𝑡 ) 𝑅 𝐸 ) )
39 35 6 38 syl2anc ( 𝜑 → ( ∀ 𝑜 ∈ ( 𝐹𝑟 ) ¬ 𝑜 𝑅 𝐸 ↔ ∀ 𝑡𝑟 ¬ ( 𝐹𝑡 ) 𝑅 𝐸 ) )
40 34 39 mpbid ( 𝜑 → ∀ 𝑡𝑟 ¬ ( 𝐹𝑡 ) 𝑅 𝐸 )
41 simpr ( ( 𝜑𝑡 ∈ ( 𝑟 𝐸 / 𝑥 𝐵 ) ) → 𝑡 ∈ ( 𝑟 𝐸 / 𝑥 𝐵 ) )
42 41 elin1d ( ( 𝜑𝑡 ∈ ( 𝑟 𝐸 / 𝑥 𝐵 ) ) → 𝑡𝑟 )
43 rspa ( ( ∀ 𝑡𝑟 ¬ ( 𝐹𝑡 ) 𝑅 𝐸𝑡𝑟 ) → ¬ ( 𝐹𝑡 ) 𝑅 𝐸 )
44 40 42 43 syl2an2r ( ( 𝜑𝑡 ∈ ( 𝑟 𝐸 / 𝑥 𝐵 ) ) → ¬ ( 𝐹𝑡 ) 𝑅 𝐸 )
45 csbeq1 ( 𝑠 = 𝐸 𝑠 / 𝑥 𝐵 = 𝐸 / 𝑥 𝐵 )
46 breq1 ( 𝑠 = 𝐸 → ( 𝑠 𝑅 ( 𝐹𝑡 ) ↔ 𝐸 𝑅 ( 𝐹𝑡 ) ) )
47 46 notbid ( 𝑠 = 𝐸 → ( ¬ 𝑠 𝑅 ( 𝐹𝑡 ) ↔ ¬ 𝐸 𝑅 ( 𝐹𝑡 ) ) )
48 45 47 raleqbidv ( 𝑠 = 𝐸 → ( ∀ 𝑡 𝑠 / 𝑥 𝐵 ¬ 𝑠 𝑅 ( 𝐹𝑡 ) ↔ ∀ 𝑡 𝐸 / 𝑥 𝐵 ¬ 𝐸 𝑅 ( 𝐹𝑡 ) ) )
49 8 simp3d ( 𝜑 → ∀ 𝑠𝐴𝑡 𝑠 / 𝑥 𝐵 ¬ 𝑠 𝑅 ( 𝐹𝑡 ) )
50 10 33 sseldd ( 𝜑𝐸𝐴 )
51 48 49 50 rspcdva ( 𝜑 → ∀ 𝑡 𝐸 / 𝑥 𝐵 ¬ 𝐸 𝑅 ( 𝐹𝑡 ) )
52 41 elin2d ( ( 𝜑𝑡 ∈ ( 𝑟 𝐸 / 𝑥 𝐵 ) ) → 𝑡 𝐸 / 𝑥 𝐵 )
53 rspa ( ( ∀ 𝑡 𝐸 / 𝑥 𝐵 ¬ 𝐸 𝑅 ( 𝐹𝑡 ) ∧ 𝑡 𝐸 / 𝑥 𝐵 ) → ¬ 𝐸 𝑅 ( 𝐹𝑡 ) )
54 51 52 53 syl2an2r ( ( 𝜑𝑡 ∈ ( 𝑟 𝐸 / 𝑥 𝐵 ) ) → ¬ 𝐸 𝑅 ( 𝐹𝑡 ) )
55 weso ( 𝑅 We 𝐴𝑅 Or 𝐴 )
56 3 55 syl ( 𝜑𝑅 Or 𝐴 )
57 56 adantr ( ( 𝜑𝑡 ∈ ( 𝑟 𝐸 / 𝑥 𝐵 ) ) → 𝑅 Or 𝐴 )
58 9 adantr ( ( 𝜑𝑡 ∈ ( 𝑟 𝐸 / 𝑥 𝐵 ) ) → 𝐹 : 𝑥𝐴 𝐵𝐴 )
59 6 adantr ( ( 𝜑𝑡 ∈ ( 𝑟 𝐸 / 𝑥 𝐵 ) ) → 𝑟 𝑥𝐴 𝐵 )
60 59 42 sseldd ( ( 𝜑𝑡 ∈ ( 𝑟 𝐸 / 𝑥 𝐵 ) ) → 𝑡 𝑥𝐴 𝐵 )
61 58 60 ffvelcdmd ( ( 𝜑𝑡 ∈ ( 𝑟 𝐸 / 𝑥 𝐵 ) ) → ( 𝐹𝑡 ) ∈ 𝐴 )
62 50 adantr ( ( 𝜑𝑡 ∈ ( 𝑟 𝐸 / 𝑥 𝐵 ) ) → 𝐸𝐴 )
63 sotrieq2 ( ( 𝑅 Or 𝐴 ∧ ( ( 𝐹𝑡 ) ∈ 𝐴𝐸𝐴 ) ) → ( ( 𝐹𝑡 ) = 𝐸 ↔ ( ¬ ( 𝐹𝑡 ) 𝑅 𝐸 ∧ ¬ 𝐸 𝑅 ( 𝐹𝑡 ) ) ) )
64 57 61 62 63 syl12anc ( ( 𝜑𝑡 ∈ ( 𝑟 𝐸 / 𝑥 𝐵 ) ) → ( ( 𝐹𝑡 ) = 𝐸 ↔ ( ¬ ( 𝐹𝑡 ) 𝑅 𝐸 ∧ ¬ 𝐸 𝑅 ( 𝐹𝑡 ) ) ) )
65 44 54 64 mpbir2and ( ( 𝜑𝑡 ∈ ( 𝑟 𝐸 / 𝑥 𝐵 ) ) → ( 𝐹𝑡 ) = 𝐸 )
66 65 ralrimiva ( 𝜑 → ∀ 𝑡 ∈ ( 𝑟 𝐸 / 𝑥 𝐵 ) ( 𝐹𝑡 ) = 𝐸 )
67 33 40 66 3jca ( 𝜑 → ( 𝐸 ∈ ( 𝐹𝑟 ) ∧ ∀ 𝑡𝑟 ¬ ( 𝐹𝑡 ) 𝑅 𝐸 ∧ ∀ 𝑡 ∈ ( 𝑟 𝐸 / 𝑥 𝐵 ) ( 𝐹𝑡 ) = 𝐸 ) )