Metamath Proof Explorer


Theorem weiunfrlem

Description: Lemma for weiunfr . (Contributed by Matthew House, 23-Aug-2025)

Ref Expression
Hypotheses weiun.1 F = w x A B ι u x A | w B | v x A | w B ¬ v R u
weiun.2 T = y z | y x A B z x A B F y R F z F y = F z y F y / x S z
weiunlem2.3 φ R We A
weiunlem2.4 φ R Se A
weiunfrlem.5 E = ι p F r | q F r ¬ q R p
weiunfrlem.6 φ r x A B
weiunfrlem.7 φ r
Assertion weiunfrlem φ E F r t r ¬ F t R E t r E / x B F t = E

Proof

Step Hyp Ref Expression
1 weiun.1 F = w x A B ι u x A | w B | v x A | w B ¬ v R u
2 weiun.2 T = y z | y x A B z x A B F y R F z F y = F z y F y / x S z
3 weiunlem2.3 φ R We A
4 weiunlem2.4 φ R Se A
5 weiunfrlem.5 E = ι p F r | q F r ¬ q R p
6 weiunfrlem.6 φ r x A B
7 weiunfrlem.7 φ r
8 1 2 3 4 weiunlem2 φ F : x A B A t x A B t F t / x B s A t s / x B ¬ s R F t
9 8 simp1d φ F : x A B A
10 9 fimassd φ F r A
11 9 fdmd φ dom F = x A B
12 6 11 sseqtrrd φ r dom F
13 sseqin2 r dom F dom F r = r
14 12 13 sylib φ dom F r = r
15 14 7 eqnetrd φ dom F r
16 15 imadisjlnd φ F r
17 wereu2 R We A R Se A F r A F r ∃! p F r q F r ¬ q R p
18 3 4 10 16 17 syl22anc φ ∃! p F r q F r ¬ q R p
19 riotacl2 ∃! p F r q F r ¬ q R p ι p F r | q F r ¬ q R p p F r | q F r ¬ q R p
20 18 19 syl φ ι p F r | q F r ¬ q R p p F r | q F r ¬ q R p
21 simpr n = p o = q o = q
22 simpl n = p o = q n = p
23 21 22 breq12d n = p o = q o R n q R p
24 23 notbid n = p o = q ¬ o R n ¬ q R p
25 24 cbvraldva n = p o F r ¬ o R n q F r ¬ q R p
26 25 cbvrabv n F r | o F r ¬ o R n = p F r | q F r ¬ q R p
27 20 5 26 3eltr4g φ E n F r | o F r ¬ o R n
28 breq2 n = E o R n o R E
29 28 notbid n = E ¬ o R n ¬ o R E
30 29 ralbidv n = E o F r ¬ o R n o F r ¬ o R E
31 30 elrab E n F r | o F r ¬ o R n E F r o F r ¬ o R E
32 27 31 sylib φ E F r o F r ¬ o R E
33 32 simpld φ E F r
34 32 simprd φ o F r ¬ o R E
35 9 ffnd φ F Fn x A B
36 breq1 o = F t o R E F t R E
37 36 notbid o = F t ¬ o R E ¬ F t R E
38 37 ralima F Fn x A B r x A B o F r ¬ o R E t r ¬ F t R E
39 35 6 38 syl2anc φ o F r ¬ o R E t r ¬ F t R E
40 34 39 mpbid φ t r ¬ F t R E
41 simpr φ t r E / x B t r E / x B
42 41 elin1d φ t r E / x B t r
43 rspa t r ¬ F t R E t r ¬ F t R E
44 40 42 43 syl2an2r φ t r E / x B ¬ F t R E
45 csbeq1 s = E s / x B = E / x B
46 breq1 s = E s R F t E R F t
47 46 notbid s = E ¬ s R F t ¬ E R F t
48 45 47 raleqbidv s = E t s / x B ¬ s R F t t E / x B ¬ E R F t
49 8 simp3d φ s A t s / x B ¬ s R F t
50 10 33 sseldd φ E A
51 48 49 50 rspcdva φ t E / x B ¬ E R F t
52 41 elin2d φ t r E / x B t E / x B
53 rspa t E / x B ¬ E R F t t E / x B ¬ E R F t
54 51 52 53 syl2an2r φ t r E / x B ¬ E R F t
55 weso R We A R Or A
56 3 55 syl φ R Or A
57 56 adantr φ t r E / x B R Or A
58 9 adantr φ t r E / x B F : x A B A
59 6 adantr φ t r E / x B r x A B
60 59 42 sseldd φ t r E / x B t x A B
61 58 60 ffvelcdmd φ t r E / x B F t A
62 50 adantr φ t r E / x B E A
63 sotrieq2 R Or A F t A E A F t = E ¬ F t R E ¬ E R F t
64 57 61 62 63 syl12anc φ t r E / x B F t = E ¬ F t R E ¬ E R F t
65 44 54 64 mpbir2and φ t r E / x B F t = E
66 65 ralrimiva φ t r E / x B F t = E
67 33 40 66 3jca φ E F r t r ¬ F t R E t r E / x B F t = E