Metamath Proof Explorer


Theorem weiunwe

Description: A well-ordering on an indexed union can be constructed from a well-ordering on its index set and a collection of well-orderings on its members. (Contributed by Matthew House, 23-Aug-2025)

Ref Expression
Hypotheses weiunwe.1 𝐹 = ( 𝑤 𝑥𝐴 𝐵 ↦ ( 𝑢 ∈ { 𝑥𝐴𝑤𝐵 } ∀ 𝑣 ∈ { 𝑥𝐴𝑤𝐵 } ¬ 𝑣 𝑅 𝑢 ) )
weiunwe.2 𝑇 = { ⟨ 𝑦 , 𝑧 ⟩ ∣ ( ( 𝑦 𝑥𝐴 𝐵𝑧 𝑥𝐴 𝐵 ) ∧ ( ( 𝐹𝑦 ) 𝑅 ( 𝐹𝑧 ) ∨ ( ( 𝐹𝑦 ) = ( 𝐹𝑧 ) ∧ 𝑦 ( 𝐹𝑦 ) / 𝑥 𝑆 𝑧 ) ) ) }
Assertion weiunwe ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ∧ ∀ 𝑥𝐴 𝑆 We 𝐵 ) → 𝑇 We 𝑥𝐴 𝐵 )

Proof

Step Hyp Ref Expression
1 weiunwe.1 𝐹 = ( 𝑤 𝑥𝐴 𝐵 ↦ ( 𝑢 ∈ { 𝑥𝐴𝑤𝐵 } ∀ 𝑣 ∈ { 𝑥𝐴𝑤𝐵 } ¬ 𝑣 𝑅 𝑢 ) )
2 weiunwe.2 𝑇 = { ⟨ 𝑦 , 𝑧 ⟩ ∣ ( ( 𝑦 𝑥𝐴 𝐵𝑧 𝑥𝐴 𝐵 ) ∧ ( ( 𝐹𝑦 ) 𝑅 ( 𝐹𝑧 ) ∨ ( ( 𝐹𝑦 ) = ( 𝐹𝑧 ) ∧ 𝑦 ( 𝐹𝑦 ) / 𝑥 𝑆 𝑧 ) ) ) }
3 wefr ( 𝑆 We 𝐵𝑆 Fr 𝐵 )
4 3 ralimi ( ∀ 𝑥𝐴 𝑆 We 𝐵 → ∀ 𝑥𝐴 𝑆 Fr 𝐵 )
5 1 2 weiunfr ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ∧ ∀ 𝑥𝐴 𝑆 Fr 𝐵 ) → 𝑇 Fr 𝑥𝐴 𝐵 )
6 4 5 syl3an3 ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ∧ ∀ 𝑥𝐴 𝑆 We 𝐵 ) → 𝑇 Fr 𝑥𝐴 𝐵 )
7 weso ( 𝑆 We 𝐵𝑆 Or 𝐵 )
8 7 ralimi ( ∀ 𝑥𝐴 𝑆 We 𝐵 → ∀ 𝑥𝐴 𝑆 Or 𝐵 )
9 1 2 weiunso ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ∧ ∀ 𝑥𝐴 𝑆 Or 𝐵 ) → 𝑇 Or 𝑥𝐴 𝐵 )
10 8 9 syl3an3 ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ∧ ∀ 𝑥𝐴 𝑆 We 𝐵 ) → 𝑇 Or 𝑥𝐴 𝐵 )
11 df-we ( 𝑇 We 𝑥𝐴 𝐵 ↔ ( 𝑇 Fr 𝑥𝐴 𝐵𝑇 Or 𝑥𝐴 𝐵 ) )
12 6 10 11 sylanbrc ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ∧ ∀ 𝑥𝐴 𝑆 We 𝐵 ) → 𝑇 We 𝑥𝐴 𝐵 )