Step |
Hyp |
Ref |
Expression |
1 |
|
weiunwe.1 |
⊢ 𝐹 = ( 𝑤 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↦ ( ℩ 𝑢 ∈ { 𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵 } ∀ 𝑣 ∈ { 𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵 } ¬ 𝑣 𝑅 𝑢 ) ) |
2 |
|
weiunwe.2 |
⊢ 𝑇 = { 〈 𝑦 , 𝑧 〉 ∣ ( ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ∧ ( ( 𝐹 ‘ 𝑦 ) 𝑅 ( 𝐹 ‘ 𝑧 ) ∨ ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) ∧ 𝑦 ⦋ ( 𝐹 ‘ 𝑦 ) / 𝑥 ⦌ 𝑆 𝑧 ) ) ) } |
3 |
|
wefr |
⊢ ( 𝑆 We 𝐵 → 𝑆 Fr 𝐵 ) |
4 |
3
|
ralimi |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝑆 We 𝐵 → ∀ 𝑥 ∈ 𝐴 𝑆 Fr 𝐵 ) |
5 |
1 2
|
weiunfr |
⊢ ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 Fr 𝐵 ) → 𝑇 Fr ∪ 𝑥 ∈ 𝐴 𝐵 ) |
6 |
4 5
|
syl3an3 |
⊢ ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 We 𝐵 ) → 𝑇 Fr ∪ 𝑥 ∈ 𝐴 𝐵 ) |
7 |
|
weso |
⊢ ( 𝑆 We 𝐵 → 𝑆 Or 𝐵 ) |
8 |
7
|
ralimi |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝑆 We 𝐵 → ∀ 𝑥 ∈ 𝐴 𝑆 Or 𝐵 ) |
9 |
1 2
|
weiunso |
⊢ ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 Or 𝐵 ) → 𝑇 Or ∪ 𝑥 ∈ 𝐴 𝐵 ) |
10 |
8 9
|
syl3an3 |
⊢ ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 We 𝐵 ) → 𝑇 Or ∪ 𝑥 ∈ 𝐴 𝐵 ) |
11 |
|
df-we |
⊢ ( 𝑇 We ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ( 𝑇 Fr ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑇 Or ∪ 𝑥 ∈ 𝐴 𝐵 ) ) |
12 |
6 10 11
|
sylanbrc |
⊢ ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑆 We 𝐵 ) → 𝑇 We ∪ 𝑥 ∈ 𝐴 𝐵 ) |