Metamath Proof Explorer


Theorem numiunnum

Description: An indexed union of sets is numerable if its index set is numerable and there exists a collection of well-orderings on its members. (Contributed by Matthew House, 23-Aug-2025)

Ref Expression
Assertion numiunnum ( ( 𝐴 ∈ dom card ∧ ∀ 𝑥𝐴 ( 𝐵𝑉𝑆 We 𝐵 ) ) → 𝑥𝐴 𝐵 ∈ dom card )

Proof

Step Hyp Ref Expression
1 dfac8b ( 𝐴 ∈ dom card → ∃ 𝑠 𝑠 We 𝐴 )
2 1 adantr ( ( 𝐴 ∈ dom card ∧ ∀ 𝑥𝐴 ( 𝐵𝑉𝑆 We 𝐵 ) ) → ∃ 𝑠 𝑠 We 𝐴 )
3 simpll ( ( ( 𝐴 ∈ dom card ∧ ∀ 𝑥𝐴 ( 𝐵𝑉𝑆 We 𝐵 ) ) ∧ 𝑠 We 𝐴 ) → 𝐴 ∈ dom card )
4 simplr ( ( ( 𝐴 ∈ dom card ∧ ∀ 𝑥𝐴 ( 𝐵𝑉𝑆 We 𝐵 ) ) ∧ 𝑠 We 𝐴 ) → ∀ 𝑥𝐴 ( 𝐵𝑉𝑆 We 𝐵 ) )
5 r19.26 ( ∀ 𝑥𝐴 ( 𝐵𝑉𝑆 We 𝐵 ) ↔ ( ∀ 𝑥𝐴 𝐵𝑉 ∧ ∀ 𝑥𝐴 𝑆 We 𝐵 ) )
6 4 5 sylib ( ( ( 𝐴 ∈ dom card ∧ ∀ 𝑥𝐴 ( 𝐵𝑉𝑆 We 𝐵 ) ) ∧ 𝑠 We 𝐴 ) → ( ∀ 𝑥𝐴 𝐵𝑉 ∧ ∀ 𝑥𝐴 𝑆 We 𝐵 ) )
7 6 simpld ( ( ( 𝐴 ∈ dom card ∧ ∀ 𝑥𝐴 ( 𝐵𝑉𝑆 We 𝐵 ) ) ∧ 𝑠 We 𝐴 ) → ∀ 𝑥𝐴 𝐵𝑉 )
8 iunexg ( ( 𝐴 ∈ dom card ∧ ∀ 𝑥𝐴 𝐵𝑉 ) → 𝑥𝐴 𝐵 ∈ V )
9 3 7 8 syl2anc ( ( ( 𝐴 ∈ dom card ∧ ∀ 𝑥𝐴 ( 𝐵𝑉𝑆 We 𝐵 ) ) ∧ 𝑠 We 𝐴 ) → 𝑥𝐴 𝐵 ∈ V )
10 9 9 xpexd ( ( ( 𝐴 ∈ dom card ∧ ∀ 𝑥𝐴 ( 𝐵𝑉𝑆 We 𝐵 ) ) ∧ 𝑠 We 𝐴 ) → ( 𝑥𝐴 𝐵 × 𝑥𝐴 𝐵 ) ∈ V )
11 opabssxp { ⟨ 𝑦 , 𝑧 ⟩ ∣ ( ( 𝑦 𝑥𝐴 𝐵𝑧 𝑥𝐴 𝐵 ) ∧ ( ( ( 𝑤 𝑥𝐴 𝐵 ↦ ( 𝑢 ∈ { 𝑥𝐴𝑤𝐵 } ∀ 𝑣 ∈ { 𝑥𝐴𝑤𝐵 } ¬ 𝑣 𝑠 𝑢 ) ) ‘ 𝑦 ) 𝑠 ( ( 𝑤 𝑥𝐴 𝐵 ↦ ( 𝑢 ∈ { 𝑥𝐴𝑤𝐵 } ∀ 𝑣 ∈ { 𝑥𝐴𝑤𝐵 } ¬ 𝑣 𝑠 𝑢 ) ) ‘ 𝑧 ) ∨ ( ( ( 𝑤 𝑥𝐴 𝐵 ↦ ( 𝑢 ∈ { 𝑥𝐴𝑤𝐵 } ∀ 𝑣 ∈ { 𝑥𝐴𝑤𝐵 } ¬ 𝑣 𝑠 𝑢 ) ) ‘ 𝑦 ) = ( ( 𝑤 𝑥𝐴 𝐵 ↦ ( 𝑢 ∈ { 𝑥𝐴𝑤𝐵 } ∀ 𝑣 ∈ { 𝑥𝐴𝑤𝐵 } ¬ 𝑣 𝑠 𝑢 ) ) ‘ 𝑧 ) ∧ 𝑦 ( ( 𝑤 𝑥𝐴 𝐵 ↦ ( 𝑢 ∈ { 𝑥𝐴𝑤𝐵 } ∀ 𝑣 ∈ { 𝑥𝐴𝑤𝐵 } ¬ 𝑣 𝑠 𝑢 ) ) ‘ 𝑦 ) / 𝑥 𝑆 𝑧 ) ) ) } ⊆ ( 𝑥𝐴 𝐵 × 𝑥𝐴 𝐵 )
12 11 a1i ( ( ( 𝐴 ∈ dom card ∧ ∀ 𝑥𝐴 ( 𝐵𝑉𝑆 We 𝐵 ) ) ∧ 𝑠 We 𝐴 ) → { ⟨ 𝑦 , 𝑧 ⟩ ∣ ( ( 𝑦 𝑥𝐴 𝐵𝑧 𝑥𝐴 𝐵 ) ∧ ( ( ( 𝑤 𝑥𝐴 𝐵 ↦ ( 𝑢 ∈ { 𝑥𝐴𝑤𝐵 } ∀ 𝑣 ∈ { 𝑥𝐴𝑤𝐵 } ¬ 𝑣 𝑠 𝑢 ) ) ‘ 𝑦 ) 𝑠 ( ( 𝑤 𝑥𝐴 𝐵 ↦ ( 𝑢 ∈ { 𝑥𝐴𝑤𝐵 } ∀ 𝑣 ∈ { 𝑥𝐴𝑤𝐵 } ¬ 𝑣 𝑠 𝑢 ) ) ‘ 𝑧 ) ∨ ( ( ( 𝑤 𝑥𝐴 𝐵 ↦ ( 𝑢 ∈ { 𝑥𝐴𝑤𝐵 } ∀ 𝑣 ∈ { 𝑥𝐴𝑤𝐵 } ¬ 𝑣 𝑠 𝑢 ) ) ‘ 𝑦 ) = ( ( 𝑤 𝑥𝐴 𝐵 ↦ ( 𝑢 ∈ { 𝑥𝐴𝑤𝐵 } ∀ 𝑣 ∈ { 𝑥𝐴𝑤𝐵 } ¬ 𝑣 𝑠 𝑢 ) ) ‘ 𝑧 ) ∧ 𝑦 ( ( 𝑤 𝑥𝐴 𝐵 ↦ ( 𝑢 ∈ { 𝑥𝐴𝑤𝐵 } ∀ 𝑣 ∈ { 𝑥𝐴𝑤𝐵 } ¬ 𝑣 𝑠 𝑢 ) ) ‘ 𝑦 ) / 𝑥 𝑆 𝑧 ) ) ) } ⊆ ( 𝑥𝐴 𝐵 × 𝑥𝐴 𝐵 ) )
13 10 12 ssexd ( ( ( 𝐴 ∈ dom card ∧ ∀ 𝑥𝐴 ( 𝐵𝑉𝑆 We 𝐵 ) ) ∧ 𝑠 We 𝐴 ) → { ⟨ 𝑦 , 𝑧 ⟩ ∣ ( ( 𝑦 𝑥𝐴 𝐵𝑧 𝑥𝐴 𝐵 ) ∧ ( ( ( 𝑤 𝑥𝐴 𝐵 ↦ ( 𝑢 ∈ { 𝑥𝐴𝑤𝐵 } ∀ 𝑣 ∈ { 𝑥𝐴𝑤𝐵 } ¬ 𝑣 𝑠 𝑢 ) ) ‘ 𝑦 ) 𝑠 ( ( 𝑤 𝑥𝐴 𝐵 ↦ ( 𝑢 ∈ { 𝑥𝐴𝑤𝐵 } ∀ 𝑣 ∈ { 𝑥𝐴𝑤𝐵 } ¬ 𝑣 𝑠 𝑢 ) ) ‘ 𝑧 ) ∨ ( ( ( 𝑤 𝑥𝐴 𝐵 ↦ ( 𝑢 ∈ { 𝑥𝐴𝑤𝐵 } ∀ 𝑣 ∈ { 𝑥𝐴𝑤𝐵 } ¬ 𝑣 𝑠 𝑢 ) ) ‘ 𝑦 ) = ( ( 𝑤 𝑥𝐴 𝐵 ↦ ( 𝑢 ∈ { 𝑥𝐴𝑤𝐵 } ∀ 𝑣 ∈ { 𝑥𝐴𝑤𝐵 } ¬ 𝑣 𝑠 𝑢 ) ) ‘ 𝑧 ) ∧ 𝑦 ( ( 𝑤 𝑥𝐴 𝐵 ↦ ( 𝑢 ∈ { 𝑥𝐴𝑤𝐵 } ∀ 𝑣 ∈ { 𝑥𝐴𝑤𝐵 } ¬ 𝑣 𝑠 𝑢 ) ) ‘ 𝑦 ) / 𝑥 𝑆 𝑧 ) ) ) } ∈ V )
14 simpr ( ( ( 𝐴 ∈ dom card ∧ ∀ 𝑥𝐴 ( 𝐵𝑉𝑆 We 𝐵 ) ) ∧ 𝑠 We 𝐴 ) → 𝑠 We 𝐴 )
15 exse ( 𝐴 ∈ dom card → 𝑠 Se 𝐴 )
16 15 ad2antrr ( ( ( 𝐴 ∈ dom card ∧ ∀ 𝑥𝐴 ( 𝐵𝑉𝑆 We 𝐵 ) ) ∧ 𝑠 We 𝐴 ) → 𝑠 Se 𝐴 )
17 6 simprd ( ( ( 𝐴 ∈ dom card ∧ ∀ 𝑥𝐴 ( 𝐵𝑉𝑆 We 𝐵 ) ) ∧ 𝑠 We 𝐴 ) → ∀ 𝑥𝐴 𝑆 We 𝐵 )
18 eqid ( 𝑤 𝑥𝐴 𝐵 ↦ ( 𝑢 ∈ { 𝑥𝐴𝑤𝐵 } ∀ 𝑣 ∈ { 𝑥𝐴𝑤𝐵 } ¬ 𝑣 𝑠 𝑢 ) ) = ( 𝑤 𝑥𝐴 𝐵 ↦ ( 𝑢 ∈ { 𝑥𝐴𝑤𝐵 } ∀ 𝑣 ∈ { 𝑥𝐴𝑤𝐵 } ¬ 𝑣 𝑠 𝑢 ) )
19 eqid { ⟨ 𝑦 , 𝑧 ⟩ ∣ ( ( 𝑦 𝑥𝐴 𝐵𝑧 𝑥𝐴 𝐵 ) ∧ ( ( ( 𝑤 𝑥𝐴 𝐵 ↦ ( 𝑢 ∈ { 𝑥𝐴𝑤𝐵 } ∀ 𝑣 ∈ { 𝑥𝐴𝑤𝐵 } ¬ 𝑣 𝑠 𝑢 ) ) ‘ 𝑦 ) 𝑠 ( ( 𝑤 𝑥𝐴 𝐵 ↦ ( 𝑢 ∈ { 𝑥𝐴𝑤𝐵 } ∀ 𝑣 ∈ { 𝑥𝐴𝑤𝐵 } ¬ 𝑣 𝑠 𝑢 ) ) ‘ 𝑧 ) ∨ ( ( ( 𝑤 𝑥𝐴 𝐵 ↦ ( 𝑢 ∈ { 𝑥𝐴𝑤𝐵 } ∀ 𝑣 ∈ { 𝑥𝐴𝑤𝐵 } ¬ 𝑣 𝑠 𝑢 ) ) ‘ 𝑦 ) = ( ( 𝑤 𝑥𝐴 𝐵 ↦ ( 𝑢 ∈ { 𝑥𝐴𝑤𝐵 } ∀ 𝑣 ∈ { 𝑥𝐴𝑤𝐵 } ¬ 𝑣 𝑠 𝑢 ) ) ‘ 𝑧 ) ∧ 𝑦 ( ( 𝑤 𝑥𝐴 𝐵 ↦ ( 𝑢 ∈ { 𝑥𝐴𝑤𝐵 } ∀ 𝑣 ∈ { 𝑥𝐴𝑤𝐵 } ¬ 𝑣 𝑠 𝑢 ) ) ‘ 𝑦 ) / 𝑥 𝑆 𝑧 ) ) ) } = { ⟨ 𝑦 , 𝑧 ⟩ ∣ ( ( 𝑦 𝑥𝐴 𝐵𝑧 𝑥𝐴 𝐵 ) ∧ ( ( ( 𝑤 𝑥𝐴 𝐵 ↦ ( 𝑢 ∈ { 𝑥𝐴𝑤𝐵 } ∀ 𝑣 ∈ { 𝑥𝐴𝑤𝐵 } ¬ 𝑣 𝑠 𝑢 ) ) ‘ 𝑦 ) 𝑠 ( ( 𝑤 𝑥𝐴 𝐵 ↦ ( 𝑢 ∈ { 𝑥𝐴𝑤𝐵 } ∀ 𝑣 ∈ { 𝑥𝐴𝑤𝐵 } ¬ 𝑣 𝑠 𝑢 ) ) ‘ 𝑧 ) ∨ ( ( ( 𝑤 𝑥𝐴 𝐵 ↦ ( 𝑢 ∈ { 𝑥𝐴𝑤𝐵 } ∀ 𝑣 ∈ { 𝑥𝐴𝑤𝐵 } ¬ 𝑣 𝑠 𝑢 ) ) ‘ 𝑦 ) = ( ( 𝑤 𝑥𝐴 𝐵 ↦ ( 𝑢 ∈ { 𝑥𝐴𝑤𝐵 } ∀ 𝑣 ∈ { 𝑥𝐴𝑤𝐵 } ¬ 𝑣 𝑠 𝑢 ) ) ‘ 𝑧 ) ∧ 𝑦 ( ( 𝑤 𝑥𝐴 𝐵 ↦ ( 𝑢 ∈ { 𝑥𝐴𝑤𝐵 } ∀ 𝑣 ∈ { 𝑥𝐴𝑤𝐵 } ¬ 𝑣 𝑠 𝑢 ) ) ‘ 𝑦 ) / 𝑥 𝑆 𝑧 ) ) ) }
20 18 19 weiunwe ( ( 𝑠 We 𝐴𝑠 Se 𝐴 ∧ ∀ 𝑥𝐴 𝑆 We 𝐵 ) → { ⟨ 𝑦 , 𝑧 ⟩ ∣ ( ( 𝑦 𝑥𝐴 𝐵𝑧 𝑥𝐴 𝐵 ) ∧ ( ( ( 𝑤 𝑥𝐴 𝐵 ↦ ( 𝑢 ∈ { 𝑥𝐴𝑤𝐵 } ∀ 𝑣 ∈ { 𝑥𝐴𝑤𝐵 } ¬ 𝑣 𝑠 𝑢 ) ) ‘ 𝑦 ) 𝑠 ( ( 𝑤 𝑥𝐴 𝐵 ↦ ( 𝑢 ∈ { 𝑥𝐴𝑤𝐵 } ∀ 𝑣 ∈ { 𝑥𝐴𝑤𝐵 } ¬ 𝑣 𝑠 𝑢 ) ) ‘ 𝑧 ) ∨ ( ( ( 𝑤 𝑥𝐴 𝐵 ↦ ( 𝑢 ∈ { 𝑥𝐴𝑤𝐵 } ∀ 𝑣 ∈ { 𝑥𝐴𝑤𝐵 } ¬ 𝑣 𝑠 𝑢 ) ) ‘ 𝑦 ) = ( ( 𝑤 𝑥𝐴 𝐵 ↦ ( 𝑢 ∈ { 𝑥𝐴𝑤𝐵 } ∀ 𝑣 ∈ { 𝑥𝐴𝑤𝐵 } ¬ 𝑣 𝑠 𝑢 ) ) ‘ 𝑧 ) ∧ 𝑦 ( ( 𝑤 𝑥𝐴 𝐵 ↦ ( 𝑢 ∈ { 𝑥𝐴𝑤𝐵 } ∀ 𝑣 ∈ { 𝑥𝐴𝑤𝐵 } ¬ 𝑣 𝑠 𝑢 ) ) ‘ 𝑦 ) / 𝑥 𝑆 𝑧 ) ) ) } We 𝑥𝐴 𝐵 )
21 14 16 17 20 syl3anc ( ( ( 𝐴 ∈ dom card ∧ ∀ 𝑥𝐴 ( 𝐵𝑉𝑆 We 𝐵 ) ) ∧ 𝑠 We 𝐴 ) → { ⟨ 𝑦 , 𝑧 ⟩ ∣ ( ( 𝑦 𝑥𝐴 𝐵𝑧 𝑥𝐴 𝐵 ) ∧ ( ( ( 𝑤 𝑥𝐴 𝐵 ↦ ( 𝑢 ∈ { 𝑥𝐴𝑤𝐵 } ∀ 𝑣 ∈ { 𝑥𝐴𝑤𝐵 } ¬ 𝑣 𝑠 𝑢 ) ) ‘ 𝑦 ) 𝑠 ( ( 𝑤 𝑥𝐴 𝐵 ↦ ( 𝑢 ∈ { 𝑥𝐴𝑤𝐵 } ∀ 𝑣 ∈ { 𝑥𝐴𝑤𝐵 } ¬ 𝑣 𝑠 𝑢 ) ) ‘ 𝑧 ) ∨ ( ( ( 𝑤 𝑥𝐴 𝐵 ↦ ( 𝑢 ∈ { 𝑥𝐴𝑤𝐵 } ∀ 𝑣 ∈ { 𝑥𝐴𝑤𝐵 } ¬ 𝑣 𝑠 𝑢 ) ) ‘ 𝑦 ) = ( ( 𝑤 𝑥𝐴 𝐵 ↦ ( 𝑢 ∈ { 𝑥𝐴𝑤𝐵 } ∀ 𝑣 ∈ { 𝑥𝐴𝑤𝐵 } ¬ 𝑣 𝑠 𝑢 ) ) ‘ 𝑧 ) ∧ 𝑦 ( ( 𝑤 𝑥𝐴 𝐵 ↦ ( 𝑢 ∈ { 𝑥𝐴𝑤𝐵 } ∀ 𝑣 ∈ { 𝑥𝐴𝑤𝐵 } ¬ 𝑣 𝑠 𝑢 ) ) ‘ 𝑦 ) / 𝑥 𝑆 𝑧 ) ) ) } We 𝑥𝐴 𝐵 )
22 weeq1 ( 𝑡 = { ⟨ 𝑦 , 𝑧 ⟩ ∣ ( ( 𝑦 𝑥𝐴 𝐵𝑧 𝑥𝐴 𝐵 ) ∧ ( ( ( 𝑤 𝑥𝐴 𝐵 ↦ ( 𝑢 ∈ { 𝑥𝐴𝑤𝐵 } ∀ 𝑣 ∈ { 𝑥𝐴𝑤𝐵 } ¬ 𝑣 𝑠 𝑢 ) ) ‘ 𝑦 ) 𝑠 ( ( 𝑤 𝑥𝐴 𝐵 ↦ ( 𝑢 ∈ { 𝑥𝐴𝑤𝐵 } ∀ 𝑣 ∈ { 𝑥𝐴𝑤𝐵 } ¬ 𝑣 𝑠 𝑢 ) ) ‘ 𝑧 ) ∨ ( ( ( 𝑤 𝑥𝐴 𝐵 ↦ ( 𝑢 ∈ { 𝑥𝐴𝑤𝐵 } ∀ 𝑣 ∈ { 𝑥𝐴𝑤𝐵 } ¬ 𝑣 𝑠 𝑢 ) ) ‘ 𝑦 ) = ( ( 𝑤 𝑥𝐴 𝐵 ↦ ( 𝑢 ∈ { 𝑥𝐴𝑤𝐵 } ∀ 𝑣 ∈ { 𝑥𝐴𝑤𝐵 } ¬ 𝑣 𝑠 𝑢 ) ) ‘ 𝑧 ) ∧ 𝑦 ( ( 𝑤 𝑥𝐴 𝐵 ↦ ( 𝑢 ∈ { 𝑥𝐴𝑤𝐵 } ∀ 𝑣 ∈ { 𝑥𝐴𝑤𝐵 } ¬ 𝑣 𝑠 𝑢 ) ) ‘ 𝑦 ) / 𝑥 𝑆 𝑧 ) ) ) } → ( 𝑡 We 𝑥𝐴 𝐵 ↔ { ⟨ 𝑦 , 𝑧 ⟩ ∣ ( ( 𝑦 𝑥𝐴 𝐵𝑧 𝑥𝐴 𝐵 ) ∧ ( ( ( 𝑤 𝑥𝐴 𝐵 ↦ ( 𝑢 ∈ { 𝑥𝐴𝑤𝐵 } ∀ 𝑣 ∈ { 𝑥𝐴𝑤𝐵 } ¬ 𝑣 𝑠 𝑢 ) ) ‘ 𝑦 ) 𝑠 ( ( 𝑤 𝑥𝐴 𝐵 ↦ ( 𝑢 ∈ { 𝑥𝐴𝑤𝐵 } ∀ 𝑣 ∈ { 𝑥𝐴𝑤𝐵 } ¬ 𝑣 𝑠 𝑢 ) ) ‘ 𝑧 ) ∨ ( ( ( 𝑤 𝑥𝐴 𝐵 ↦ ( 𝑢 ∈ { 𝑥𝐴𝑤𝐵 } ∀ 𝑣 ∈ { 𝑥𝐴𝑤𝐵 } ¬ 𝑣 𝑠 𝑢 ) ) ‘ 𝑦 ) = ( ( 𝑤 𝑥𝐴 𝐵 ↦ ( 𝑢 ∈ { 𝑥𝐴𝑤𝐵 } ∀ 𝑣 ∈ { 𝑥𝐴𝑤𝐵 } ¬ 𝑣 𝑠 𝑢 ) ) ‘ 𝑧 ) ∧ 𝑦 ( ( 𝑤 𝑥𝐴 𝐵 ↦ ( 𝑢 ∈ { 𝑥𝐴𝑤𝐵 } ∀ 𝑣 ∈ { 𝑥𝐴𝑤𝐵 } ¬ 𝑣 𝑠 𝑢 ) ) ‘ 𝑦 ) / 𝑥 𝑆 𝑧 ) ) ) } We 𝑥𝐴 𝐵 ) )
23 13 21 22 spcedv ( ( ( 𝐴 ∈ dom card ∧ ∀ 𝑥𝐴 ( 𝐵𝑉𝑆 We 𝐵 ) ) ∧ 𝑠 We 𝐴 ) → ∃ 𝑡 𝑡 We 𝑥𝐴 𝐵 )
24 2 23 exlimddv ( ( 𝐴 ∈ dom card ∧ ∀ 𝑥𝐴 ( 𝐵𝑉𝑆 We 𝐵 ) ) → ∃ 𝑡 𝑡 We 𝑥𝐴 𝐵 )
25 ween ( 𝑥𝐴 𝐵 ∈ dom card ↔ ∃ 𝑡 𝑡 We 𝑥𝐴 𝐵 )
26 24 25 sylibr ( ( 𝐴 ∈ dom card ∧ ∀ 𝑥𝐴 ( 𝐵𝑉𝑆 We 𝐵 ) ) → 𝑥𝐴 𝐵 ∈ dom card )