Metamath Proof Explorer


Theorem wereu

Description: A nonempty subset of an R -well-ordered class has a unique R -minimal element. (Contributed by NM, 18-Mar-1997) (Revised by Mario Carneiro, 28-Apr-2015)

Ref Expression
Assertion wereu RWeABVBAB∃!xByB¬yRx

Proof

Step Hyp Ref Expression
1 wefr RWeARFrA
2 fri BVRFrABABxByB¬yRx
3 2 exp32 BVRFrABABxByB¬yRx
4 3 expcom RFrABVBABxByB¬yRx
5 4 3imp2 RFrABVBABxByB¬yRx
6 1 5 sylan RWeABVBABxByB¬yRx
7 weso RWeAROrA
8 soss BAROrAROrB
9 7 8 mpan9 RWeABAROrB
10 somo ROrB*xByB¬yRx
11 9 10 syl RWeABA*xByB¬yRx
12 11 3ad2antr2 RWeABVBAB*xByB¬yRx
13 reu5 ∃!xByB¬yRxxByB¬yRx*xByB¬yRx
14 6 12 13 sylanbrc RWeABVBAB∃!xByB¬yRx