Metamath Proof Explorer


Theorem wfis2fg

Description: Well-Ordered Induction Schema, using implicit substitution. (Contributed by Scott Fenton, 11-Feb-2011) (Proof shortened by Scott Fenton, 17-Nov-2024)

Ref Expression
Hypotheses wfis2fg.1 y ψ
wfis2fg.2 y = z φ ψ
wfis2fg.3 y A z Pred R A y ψ φ
Assertion wfis2fg R We A R Se A y A φ

Proof

Step Hyp Ref Expression
1 wfis2fg.1 y ψ
2 wfis2fg.2 y = z φ ψ
3 wfis2fg.3 y A z Pred R A y ψ φ
4 wefr R We A R Fr A
5 4 adantr R We A R Se A R Fr A
6 weso R We A R Or A
7 sopo R Or A R Po A
8 6 7 syl R We A R Po A
9 8 adantr R We A R Se A R Po A
10 simpr R We A R Se A R Se A
11 3 1 2 frpoins2fg R Fr A R Po A R Se A y A φ
12 5 9 10 11 syl3anc R We A R Se A y A φ