Metamath Proof Explorer


Theorem wfis2fgOLD

Description: Obsolete version of wfis2fg as of 17-Nov-2024. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 11-Feb-2011)

Ref Expression
Hypotheses wfis2fgOLD.1 yψ
wfis2fgOLD.2 y=zφψ
wfis2fgOLD.3 yAzPredRAyψφ
Assertion wfis2fgOLD RWeARSeAyAφ

Proof

Step Hyp Ref Expression
1 wfis2fgOLD.1 yψ
2 wfis2fgOLD.2 y=zφψ
3 wfis2fgOLD.3 yAzPredRAyψφ
4 sbsbc zyφ[˙z/y]˙φ
5 1 2 sbiev zyφψ
6 4 5 bitr3i [˙z/y]˙φψ
7 6 ralbii zPredRAy[˙z/y]˙φzPredRAyψ
8 7 3 biimtrid yAzPredRAy[˙z/y]˙φφ
9 8 wfisg RWeARSeAyAφ