Metamath Proof Explorer


Theorem wl-aleq

Description: The semantics of A. x y = z . (Contributed by Wolf Lammen, 27-Apr-2018)

Ref Expression
Assertion wl-aleq xy=zy=zxx=yxx=z

Proof

Step Hyp Ref Expression
1 sp xy=zy=z
2 equequ2 y=zx=yx=z
3 2 alimi xy=zxx=yx=z
4 albi xx=yx=zxx=yxx=z
5 3 4 syl xy=zxx=yxx=z
6 1 5 jca xy=zy=zxx=yxx=z
7 ax7 x=yx=zy=z
8 7 al2imi xx=yxx=zxy=z
9 8 a1dd xx=yxx=zy=zxy=z
10 axc9 ¬xx=y¬xx=zy=zxy=z
11 9 10 bija xx=yxx=zy=zxy=z
12 11 impcom y=zxx=yxx=zxy=z
13 6 12 impbii xy=zy=zxx=yxx=z