Metamath Proof Explorer


Theorem wl-equsald

Description: Deduction version of equsal . (Contributed by Wolf Lammen, 27-Jul-2019)

Ref Expression
Hypotheses wl-equsald.1 xφ
wl-equsald.2 φxχ
wl-equsald.3 φx=yψχ
Assertion wl-equsald φxx=yψχ

Proof

Step Hyp Ref Expression
1 wl-equsald.1 xφ
2 wl-equsald.2 φxχ
3 wl-equsald.3 φx=yψχ
4 19.23t xχxx=yχxx=yχ
5 2 4 syl φxx=yχxx=yχ
6 3 pm5.74d φx=yψx=yχ
7 1 6 albid φxx=yψxx=yχ
8 ax6e xx=y
9 8 a1bi χxx=yχ
10 9 a1i φχxx=yχ
11 5 7 10 3bitr4d φxx=yψχ