Metamath Proof Explorer


Theorem wl-euequf

Description: euequ proved with a distinctor. (Contributed by Wolf Lammen, 23-Sep-2020)

Ref Expression
Assertion wl-euequf ¬xx=y∃!xx=y

Proof

Step Hyp Ref Expression
1 ax6ev zz=y
2 nfv z¬xx=y
3 nfna1 x¬xx=y
4 nfeqf2 ¬xx=yxz=y
5 equequ2 y=zx=yx=z
6 5 equcoms z=yx=yx=z
7 6 a1i ¬xx=yz=yx=yx=z
8 3 4 7 alrimdd ¬xx=yz=yxx=yx=z
9 2 8 eximd ¬xx=yzz=yzxx=yx=z
10 1 9 mpi ¬xx=yzxx=yx=z
11 eu6 ∃!xx=yzxx=yx=z
12 10 11 sylibr ¬xx=y∃!xx=y