Description: euequ proved with a distinctor. (Contributed by Wolf Lammen, 23-Sep-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | wl-euequf | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax6ev | |
|
2 | nfv | |
|
3 | nfna1 | |
|
4 | nfeqf2 | |
|
5 | equequ2 | |
|
6 | 5 | equcoms | |
7 | 6 | a1i | |
8 | 3 4 7 | alrimdd | |
9 | 2 8 | eximd | |
10 | 1 9 | mpi | |
11 | eu6 | |
|
12 | 10 11 | sylibr | |