Metamath Proof Explorer


Theorem wl-ifpimpr

Description: If one case of an if- condition is a consequence of the other, the expression in df-ifp can be shortened. (Contributed by Wolf Lammen, 12-Jun-2024)

Ref Expression
Assertion wl-ifpimpr χψif-φψχφψχ

Proof

Step Hyp Ref Expression
1 pm4.72 χψψχψ
2 1 biimpi χψψχψ
3 orcom χψψχ
4 2 3 bitrdi χψψψχ
5 4 anbi2d χψφψφψχ
6 andi φψχφψφχ
7 5 6 bitrdi χψφψφψφχ
8 7 orbi1d χψφψ¬φχφψφχ¬φχ
9 df-ifp if-φψχφψ¬φχ
10 biidd φχχ
11 biidd ¬φχχ
12 10 11 cases χφχ¬φχ
13 12 orbi2i φψχφψφχ¬φχ
14 orass φψφχ¬φχφψφχ¬φχ
15 13 14 bitr4i φψχφψφχ¬φχ
16 8 9 15 3bitr4g χψif-φψχφψχ