Metamath Proof Explorer


Theorem wl-mo2df

Description: Version of mof with a context and a distinctor replacing a distinct variable condition. This version should be used only to eliminate disjoint variable conditions. (Contributed by Wolf Lammen, 11-Aug-2019)

Ref Expression
Hypotheses wl-mo2df.1 xφ
wl-mo2df.2 yφ
wl-mo2df.3 φ¬xx=y
wl-mo2df.4 φyψ
Assertion wl-mo2df φ*xψyxψx=y

Proof

Step Hyp Ref Expression
1 wl-mo2df.1 xφ
2 wl-mo2df.2 yφ
3 wl-mo2df.3 φ¬xx=y
4 wl-mo2df.4 φyψ
5 df-mo *xψuxψx=u
6 nfeqf1 ¬yy=xyx=u
7 6 naecoms ¬xx=yyx=u
8 3 7 syl φyx=u
9 4 8 nfimd φyψx=u
10 1 9 nfald φyxψx=u
11 nfnae x¬xx=y
12 nfeqf2 ¬xx=yxu=y
13 11 12 nfan1 x¬xx=yu=y
14 equequ2 u=yx=ux=y
15 14 imbi2d u=yψx=uψx=y
16 15 adantl ¬xx=yu=yψx=uψx=y
17 13 16 albid ¬xx=yu=yxψx=uxψx=y
18 3 17 sylan φu=yxψx=uxψx=y
19 18 ex φu=yxψx=uxψx=y
20 2 10 19 cbvexd φuxψx=uyxψx=y
21 5 20 bitrid φ*xψyxψx=y