Metamath Proof Explorer


Theorem wl-mo2df

Description: Version of mof with a context and a distinctor replacing a distinct variable condition. This version should be used only to eliminate disjoint variable conditions. (Contributed by Wolf Lammen, 11-Aug-2019)

Ref Expression
Hypotheses wl-mo2df.1 x φ
wl-mo2df.2 y φ
wl-mo2df.3 φ ¬ x x = y
wl-mo2df.4 φ y ψ
Assertion wl-mo2df φ * x ψ y x ψ x = y

Proof

Step Hyp Ref Expression
1 wl-mo2df.1 x φ
2 wl-mo2df.2 y φ
3 wl-mo2df.3 φ ¬ x x = y
4 wl-mo2df.4 φ y ψ
5 df-mo * x ψ u x ψ x = u
6 nfeqf1 ¬ y y = x y x = u
7 6 naecoms ¬ x x = y y x = u
8 3 7 syl φ y x = u
9 4 8 nfimd φ y ψ x = u
10 1 9 nfald φ y x ψ x = u
11 nfnae x ¬ x x = y
12 nfeqf2 ¬ x x = y x u = y
13 11 12 nfan1 x ¬ x x = y u = y
14 equequ2 u = y x = u x = y
15 14 imbi2d u = y ψ x = u ψ x = y
16 15 adantl ¬ x x = y u = y ψ x = u ψ x = y
17 13 16 albid ¬ x x = y u = y x ψ x = u x ψ x = y
18 3 17 sylan φ u = y x ψ x = u x ψ x = y
19 18 ex φ u = y x ψ x = u x ψ x = y
20 2 10 19 cbvexd φ u x ψ x = u y x ψ x = y
21 5 20 syl5bb φ * x ψ y x ψ x = y