Metamath Proof Explorer


Theorem wl-sbalnae

Description: A theorem used in elimination of disjoint variable restrictions by replacing them with distinctors. (Contributed by Wolf Lammen, 25-Jul-2019)

Ref Expression
Assertion wl-sbalnae ¬xx=y¬xx=zzyxφxzyφ

Proof

Step Hyp Ref Expression
1 sb4b ¬yy=zzyxφyy=zxφ
2 nfnae y¬xx=y
3 nfnae y¬xx=z
4 2 3 nfan y¬xx=y¬xx=z
5 nfeqf ¬xx=y¬xx=zxy=z
6 19.21t xy=zxy=zφy=zxφ
7 6 bicomd xy=zy=zxφxy=zφ
8 5 7 syl ¬xx=y¬xx=zy=zxφxy=zφ
9 4 8 albid ¬xx=y¬xx=zyy=zxφyxy=zφ
10 1 9 sylan9bbr ¬xx=y¬xx=z¬yy=zzyxφyxy=zφ
11 nfnae x¬yy=z
12 sb4b ¬yy=zzyφyy=zφ
13 11 12 albid ¬yy=zxzyφxyy=zφ
14 alcom xyy=zφyxy=zφ
15 13 14 bitrdi ¬yy=zxzyφyxy=zφ
16 15 adantl ¬xx=y¬xx=z¬yy=zxzyφyxy=zφ
17 10 16 bitr4d ¬xx=y¬xx=z¬yy=zzyxφxzyφ
18 17 ex ¬xx=y¬xx=z¬yy=zzyxφxzyφ
19 sbequ12 y=zxφzyxφ
20 19 sps yy=zxφzyxφ
21 sbequ12 y=zφzyφ
22 21 sps yy=zφzyφ
23 22 dral2 yy=zxφxzyφ
24 20 23 bitr3d yy=zzyxφxzyφ
25 18 24 pm2.61d2 ¬xx=y¬xx=zzyxφxzyφ