Description: A theorem used in elimination of disjoint variable restrictions by replacing them with distinctors. (Contributed by Wolf Lammen, 25-Jul-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | wl-sbalnae | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sb4b | |
|
2 | nfnae | |
|
3 | nfnae | |
|
4 | 2 3 | nfan | |
5 | nfeqf | |
|
6 | 19.21t | |
|
7 | 6 | bicomd | |
8 | 5 7 | syl | |
9 | 4 8 | albid | |
10 | 1 9 | sylan9bbr | |
11 | nfnae | |
|
12 | sb4b | |
|
13 | 11 12 | albid | |
14 | alcom | |
|
15 | 13 14 | bitrdi | |
16 | 15 | adantl | |
17 | 10 16 | bitr4d | |
18 | 17 | ex | |
19 | sbequ12 | |
|
20 | 19 | sps | |
21 | sbequ12 | |
|
22 | 21 | sps | |
23 | 22 | dral2 | |
24 | 20 23 | bitr3d | |
25 | 18 24 | pm2.61d2 | |