Metamath Proof Explorer


Theorem wlkonwlk1l

Description: A walk is a walk from its first vertex to its last vertex. (Contributed by AV, 7-Feb-2021) (Revised by AV, 22-Mar-2021)

Ref Expression
Hypothesis wlkonwlk1l.w φ F Walks G P
Assertion wlkonwlk1l φ F P 0 WalksOn G lastS P P

Proof

Step Hyp Ref Expression
1 wlkonwlk1l.w φ F Walks G P
2 eqidd φ P 0 = P 0
3 wlklenvm1 F Walks G P F = P 1
4 3 fveq2d F Walks G P P F = P P 1
5 eqid Vtx G = Vtx G
6 5 wlkpwrd F Walks G P P Word Vtx G
7 lsw P Word Vtx G lastS P = P P 1
8 6 7 syl F Walks G P lastS P = P P 1
9 4 8 eqtr4d F Walks G P P F = lastS P
10 1 9 syl φ P F = lastS P
11 wlkcl F Walks G P F 0
12 nn0p1nn F 0 F + 1
13 11 12 syl F Walks G P F + 1
14 wlklenvp1 F Walks G P P = F + 1
15 13 6 14 jca32 F Walks G P F + 1 P Word Vtx G P = F + 1
16 fstwrdne0 F + 1 P Word Vtx G P = F + 1 P 0 Vtx G
17 lswlgt0cl F + 1 P Word Vtx G P = F + 1 lastS P Vtx G
18 16 17 jca F + 1 P Word Vtx G P = F + 1 P 0 Vtx G lastS P Vtx G
19 15 18 syl F Walks G P P 0 Vtx G lastS P Vtx G
20 eqid iEdg G = iEdg G
21 20 wlkf F Walks G P F Word dom iEdg G
22 wrdv F Word dom iEdg G F Word V
23 21 22 syl F Walks G P F Word V
24 19 23 6 jca32 F Walks G P P 0 Vtx G lastS P Vtx G F Word V P Word Vtx G
25 1 24 syl φ P 0 Vtx G lastS P Vtx G F Word V P Word Vtx G
26 5 iswlkon P 0 Vtx G lastS P Vtx G F Word V P Word Vtx G F P 0 WalksOn G lastS P P F Walks G P P 0 = P 0 P F = lastS P
27 25 26 syl φ F P 0 WalksOn G lastS P P F Walks G P P 0 = P 0 P F = lastS P
28 1 2 10 27 mpbir3and φ F P 0 WalksOn G lastS P P