Metamath Proof Explorer


Theorem wlkonwlk1l

Description: A walk is a walk from its first vertex to its last vertex. (Contributed by AV, 7-Feb-2021) (Revised by AV, 22-Mar-2021)

Ref Expression
Hypothesis wlkonwlk1l.w φFWalksGP
Assertion wlkonwlk1l φFP0WalksOnGlastSPP

Proof

Step Hyp Ref Expression
1 wlkonwlk1l.w φFWalksGP
2 eqidd φP0=P0
3 wlklenvm1 FWalksGPF=P1
4 3 fveq2d FWalksGPPF=PP1
5 eqid VtxG=VtxG
6 5 wlkpwrd FWalksGPPWordVtxG
7 lsw PWordVtxGlastSP=PP1
8 6 7 syl FWalksGPlastSP=PP1
9 4 8 eqtr4d FWalksGPPF=lastSP
10 1 9 syl φPF=lastSP
11 wlkcl FWalksGPF0
12 nn0p1nn F0F+1
13 11 12 syl FWalksGPF+1
14 wlklenvp1 FWalksGPP=F+1
15 13 6 14 jca32 FWalksGPF+1PWordVtxGP=F+1
16 fstwrdne0 F+1PWordVtxGP=F+1P0VtxG
17 lswlgt0cl F+1PWordVtxGP=F+1lastSPVtxG
18 16 17 jca F+1PWordVtxGP=F+1P0VtxGlastSPVtxG
19 15 18 syl FWalksGPP0VtxGlastSPVtxG
20 eqid iEdgG=iEdgG
21 20 wlkf FWalksGPFWorddomiEdgG
22 wrdv FWorddomiEdgGFWordV
23 21 22 syl FWalksGPFWordV
24 19 23 6 jca32 FWalksGPP0VtxGlastSPVtxGFWordVPWordVtxG
25 1 24 syl φP0VtxGlastSPVtxGFWordVPWordVtxG
26 5 iswlkon P0VtxGlastSPVtxGFWordVPWordVtxGFP0WalksOnGlastSPPFWalksGPP0=P0PF=lastSP
27 25 26 syl φFP0WalksOnGlastSPPFWalksGPP0=P0PF=lastSP
28 1 2 10 27 mpbir3and φFP0WalksOnGlastSPP