Metamath Proof Explorer


Theorem wrdsplex

Description: Existence of a split of a word at a given index. (Contributed by Thierry Arnoux, 11-Oct-2018) (Proof shortened by AV, 3-Nov-2022)

Ref Expression
Assertion wrdsplex WWordSN0WvWordSW=W0..^N++v

Proof

Step Hyp Ref Expression
1 swrdcl WWordSWsubstrNWWordS
2 simpr WWordSN0WN0W
3 elfzuz2 N0WW0
4 eluzfz2 W0W0W
5 2 3 4 3syl WWordSN0WW0W
6 ccatpfx WWordSN0WW0WWprefixN++WsubstrNW=WprefixW
7 5 6 mpd3an3 WWordSN0WWprefixN++WsubstrNW=WprefixW
8 pfxres WWordSN0WWprefixN=W0..^N
9 8 oveq1d WWordSN0WWprefixN++WsubstrNW=W0..^N++WsubstrNW
10 pfxid WWordSWprefixW=W
11 10 adantr WWordSN0WWprefixW=W
12 7 9 11 3eqtr3rd WWordSN0WW=W0..^N++WsubstrNW
13 oveq2 v=WsubstrNWW0..^N++v=W0..^N++WsubstrNW
14 13 rspceeqv WsubstrNWWordSW=W0..^N++WsubstrNWvWordSW=W0..^N++v
15 1 12 14 syl2an2r WWordSN0WvWordSW=W0..^N++v