Metamath Proof Explorer


Theorem wwlemuld

Description: Natural deduction form of lemul2d . (Contributed by Stanislas Polu, 9-Mar-2020)

Ref Expression
Hypotheses wwlemuld.1 φ A
wwlemuld.2 φ B
wwlemuld.3 φ C
wwlemuld.4 φ C A C B
wwlemuld.5 φ 0 < C
Assertion wwlemuld φ A B

Proof

Step Hyp Ref Expression
1 wwlemuld.1 φ A
2 wwlemuld.2 φ B
3 wwlemuld.3 φ C
4 wwlemuld.4 φ C A C B
5 wwlemuld.5 φ 0 < C
6 3 5 elrpd φ C +
7 1 2 6 lemul2d φ A B C A C B
8 4 7 mpbird φ A B