Metamath Proof Explorer


Theorem wwlemuld

Description: Natural deduction form of lemul2d . (Contributed by Stanislas Polu, 9-Mar-2020)

Ref Expression
Hypotheses wwlemuld.1 φA
wwlemuld.2 φB
wwlemuld.3 φC
wwlemuld.4 φCACB
wwlemuld.5 φ0<C
Assertion wwlemuld φAB

Proof

Step Hyp Ref Expression
1 wwlemuld.1 φA
2 wwlemuld.2 φB
3 wwlemuld.3 φC
4 wwlemuld.4 φCACB
5 wwlemuld.5 φ0<C
6 3 5 elrpd φC+
7 1 2 6 lemul2d φABCACB
8 4 7 mpbird φAB