Metamath Proof Explorer


Theorem xkobval

Description: Alternative expression for the subbase of the compact-open topology. (Contributed by Mario Carneiro, 23-Mar-2015)

Ref Expression
Hypotheses xkoval.x X=R
xkoval.k K=x𝒫X|R𝑡xComp
xkoval.t T=kK,vSfRCnS|fkv
Assertion xkobval ranT=s|k𝒫XvSR𝑡kComps=fRCnS|fkv

Proof

Step Hyp Ref Expression
1 xkoval.x X=R
2 xkoval.k K=x𝒫X|R𝑡xComp
3 xkoval.t T=kK,vSfRCnS|fkv
4 3 rnmpo ranT=s|kKvSs=fRCnS|fkv
5 oveq2 x=kR𝑡x=R𝑡k
6 5 eleq1d x=kR𝑡xCompR𝑡kComp
7 6 rexrab kx𝒫X|R𝑡xCompvSs=fRCnS|fkvk𝒫XR𝑡kCompvSs=fRCnS|fkv
8 2 rexeqi kKvSs=fRCnS|fkvkx𝒫X|R𝑡xCompvSs=fRCnS|fkv
9 r19.42v vSR𝑡kComps=fRCnS|fkvR𝑡kCompvSs=fRCnS|fkv
10 9 rexbii k𝒫XvSR𝑡kComps=fRCnS|fkvk𝒫XR𝑡kCompvSs=fRCnS|fkv
11 7 8 10 3bitr4i kKvSs=fRCnS|fkvk𝒫XvSR𝑡kComps=fRCnS|fkv
12 11 abbii s|kKvSs=fRCnS|fkv=s|k𝒫XvSR𝑡kComps=fRCnS|fkv
13 4 12 eqtri ranT=s|k𝒫XvSR𝑡kComps=fRCnS|fkv