Metamath Proof Explorer


Theorem xkotf

Description: Functionality of function T . (Contributed by Mario Carneiro, 19-Mar-2015)

Ref Expression
Hypotheses xkoval.x X=R
xkoval.k K=x𝒫X|R𝑡xComp
xkoval.t T=kK,vSfRCnS|fkv
Assertion xkotf T:K×S𝒫RCnS

Proof

Step Hyp Ref Expression
1 xkoval.x X=R
2 xkoval.k K=x𝒫X|R𝑡xComp
3 xkoval.t T=kK,vSfRCnS|fkv
4 ovex RCnSV
5 ssrab2 fRCnS|fkvRCnS
6 4 5 elpwi2 fRCnS|fkv𝒫RCnS
7 6 rgen2w kKvSfRCnS|fkv𝒫RCnS
8 3 fmpo kKvSfRCnS|fkv𝒫RCnST:K×S𝒫RCnS
9 7 8 mpbi T:K×S𝒫RCnS