Metamath Proof Explorer


Theorem xkotopon

Description: The base set of the compact-open topology. (Contributed by Mario Carneiro, 22-Aug-2015)

Ref Expression
Hypothesis xkouni.1 J=S^koR
Assertion xkotopon RTopSTopJTopOnRCnS

Proof

Step Hyp Ref Expression
1 xkouni.1 J=S^koR
2 xkotop RTopSTopS^koRTop
3 1 2 eqeltrid RTopSTopJTop
4 1 xkouni RTopSTopRCnS=J
5 istopon JTopOnRCnSJTopRCnS=J
6 3 4 5 sylanbrc RTopSTopJTopOnRCnS