Metamath Proof Explorer


Theorem xkouni

Description: The base set of the compact-open topology. (Contributed by Mario Carneiro, 19-Mar-2015)

Ref Expression
Hypothesis xkouni.1 J=S^koR
Assertion xkouni RTopSTopRCnS=J

Proof

Step Hyp Ref Expression
1 xkouni.1 J=S^koR
2 ima0 f=
3 0ss S
4 2 3 eqsstri fS
5 4 a1i RTopSTopfRCnSfS
6 5 ralrimiva RTopSTopfRCnSfS
7 rabid2 RCnS=fRCnS|fSfRCnSfS
8 6 7 sylibr RTopSTopRCnS=fRCnS|fS
9 eqid R=R
10 simpl RTopSTopRTop
11 simpr RTopSTopSTop
12 0ss R
13 12 a1i RTopSTopR
14 rest0 RTopR𝑡=
15 14 adantr RTopSTopR𝑡=
16 0cmp Comp
17 15 16 eqeltrdi RTopSTopR𝑡Comp
18 eqid S=S
19 18 topopn STopSS
20 19 adantl RTopSTopSS
21 9 10 11 13 17 20 xkoopn RTopSTopfRCnS|fSS^koR
22 8 21 eqeltrd RTopSTopRCnSS^koR
23 22 1 eleqtrrdi RTopSTopRCnSJ
24 elssuni RCnSJRCnSJ
25 23 24 syl RTopSTopRCnSJ
26 eqid x𝒫R|R𝑡xComp=x𝒫R|R𝑡xComp
27 eqid kx𝒫R|R𝑡xComp,vSfRCnS|fkv=kx𝒫R|R𝑡xComp,vSfRCnS|fkv
28 9 26 27 xkoval RTopSTopS^koR=topGenfirankx𝒫R|R𝑡xComp,vSfRCnS|fkv
29 28 unieqd RTopSTopS^koR=topGenfirankx𝒫R|R𝑡xComp,vSfRCnS|fkv
30 1 unieqi J=S^koR
31 ovex RCnSV
32 31 pwex 𝒫RCnSV
33 9 26 27 xkotf kx𝒫R|R𝑡xComp,vSfRCnS|fkv:x𝒫R|R𝑡xComp×S𝒫RCnS
34 frn kx𝒫R|R𝑡xComp,vSfRCnS|fkv:x𝒫R|R𝑡xComp×S𝒫RCnSrankx𝒫R|R𝑡xComp,vSfRCnS|fkv𝒫RCnS
35 33 34 ax-mp rankx𝒫R|R𝑡xComp,vSfRCnS|fkv𝒫RCnS
36 32 35 ssexi rankx𝒫R|R𝑡xComp,vSfRCnS|fkvV
37 fiuni rankx𝒫R|R𝑡xComp,vSfRCnS|fkvVrankx𝒫R|R𝑡xComp,vSfRCnS|fkv=firankx𝒫R|R𝑡xComp,vSfRCnS|fkv
38 36 37 ax-mp rankx𝒫R|R𝑡xComp,vSfRCnS|fkv=firankx𝒫R|R𝑡xComp,vSfRCnS|fkv
39 fvex firankx𝒫R|R𝑡xComp,vSfRCnS|fkvV
40 unitg firankx𝒫R|R𝑡xComp,vSfRCnS|fkvVtopGenfirankx𝒫R|R𝑡xComp,vSfRCnS|fkv=firankx𝒫R|R𝑡xComp,vSfRCnS|fkv
41 39 40 ax-mp topGenfirankx𝒫R|R𝑡xComp,vSfRCnS|fkv=firankx𝒫R|R𝑡xComp,vSfRCnS|fkv
42 38 41 eqtr4i rankx𝒫R|R𝑡xComp,vSfRCnS|fkv=topGenfirankx𝒫R|R𝑡xComp,vSfRCnS|fkv
43 29 30 42 3eqtr4g RTopSTopJ=rankx𝒫R|R𝑡xComp,vSfRCnS|fkv
44 35 a1i RTopSToprankx𝒫R|R𝑡xComp,vSfRCnS|fkv𝒫RCnS
45 sspwuni rankx𝒫R|R𝑡xComp,vSfRCnS|fkv𝒫RCnSrankx𝒫R|R𝑡xComp,vSfRCnS|fkvRCnS
46 44 45 sylib RTopSToprankx𝒫R|R𝑡xComp,vSfRCnS|fkvRCnS
47 43 46 eqsstrd RTopSTopJRCnS
48 25 47 eqssd RTopSTopRCnS=J