Metamath Proof Explorer


Theorem xkouni

Description: The base set of the compact-open topology. (Contributed by Mario Carneiro, 19-Mar-2015)

Ref Expression
Hypothesis xkouni.1 J = S ^ ko R
Assertion xkouni R Top S Top R Cn S = J

Proof

Step Hyp Ref Expression
1 xkouni.1 J = S ^ ko R
2 ima0 f =
3 0ss S
4 2 3 eqsstri f S
5 4 a1i R Top S Top f R Cn S f S
6 5 ralrimiva R Top S Top f R Cn S f S
7 rabid2 R Cn S = f R Cn S | f S f R Cn S f S
8 6 7 sylibr R Top S Top R Cn S = f R Cn S | f S
9 eqid R = R
10 simpl R Top S Top R Top
11 simpr R Top S Top S Top
12 0ss R
13 12 a1i R Top S Top R
14 rest0 R Top R 𝑡 =
15 14 adantr R Top S Top R 𝑡 =
16 0cmp Comp
17 15 16 eqeltrdi R Top S Top R 𝑡 Comp
18 eqid S = S
19 18 topopn S Top S S
20 19 adantl R Top S Top S S
21 9 10 11 13 17 20 xkoopn R Top S Top f R Cn S | f S S ^ ko R
22 8 21 eqeltrd R Top S Top R Cn S S ^ ko R
23 22 1 eleqtrrdi R Top S Top R Cn S J
24 elssuni R Cn S J R Cn S J
25 23 24 syl R Top S Top R Cn S J
26 eqid x 𝒫 R | R 𝑡 x Comp = x 𝒫 R | R 𝑡 x Comp
27 eqid k x 𝒫 R | R 𝑡 x Comp , v S f R Cn S | f k v = k x 𝒫 R | R 𝑡 x Comp , v S f R Cn S | f k v
28 9 26 27 xkoval R Top S Top S ^ ko R = topGen fi ran k x 𝒫 R | R 𝑡 x Comp , v S f R Cn S | f k v
29 28 unieqd R Top S Top S ^ ko R = topGen fi ran k x 𝒫 R | R 𝑡 x Comp , v S f R Cn S | f k v
30 1 unieqi J = S ^ ko R
31 ovex R Cn S V
32 31 pwex 𝒫 R Cn S V
33 9 26 27 xkotf k x 𝒫 R | R 𝑡 x Comp , v S f R Cn S | f k v : x 𝒫 R | R 𝑡 x Comp × S 𝒫 R Cn S
34 frn k x 𝒫 R | R 𝑡 x Comp , v S f R Cn S | f k v : x 𝒫 R | R 𝑡 x Comp × S 𝒫 R Cn S ran k x 𝒫 R | R 𝑡 x Comp , v S f R Cn S | f k v 𝒫 R Cn S
35 33 34 ax-mp ran k x 𝒫 R | R 𝑡 x Comp , v S f R Cn S | f k v 𝒫 R Cn S
36 32 35 ssexi ran k x 𝒫 R | R 𝑡 x Comp , v S f R Cn S | f k v V
37 fiuni ran k x 𝒫 R | R 𝑡 x Comp , v S f R Cn S | f k v V ran k x 𝒫 R | R 𝑡 x Comp , v S f R Cn S | f k v = fi ran k x 𝒫 R | R 𝑡 x Comp , v S f R Cn S | f k v
38 36 37 ax-mp ran k x 𝒫 R | R 𝑡 x Comp , v S f R Cn S | f k v = fi ran k x 𝒫 R | R 𝑡 x Comp , v S f R Cn S | f k v
39 fvex fi ran k x 𝒫 R | R 𝑡 x Comp , v S f R Cn S | f k v V
40 unitg fi ran k x 𝒫 R | R 𝑡 x Comp , v S f R Cn S | f k v V topGen fi ran k x 𝒫 R | R 𝑡 x Comp , v S f R Cn S | f k v = fi ran k x 𝒫 R | R 𝑡 x Comp , v S f R Cn S | f k v
41 39 40 ax-mp topGen fi ran k x 𝒫 R | R 𝑡 x Comp , v S f R Cn S | f k v = fi ran k x 𝒫 R | R 𝑡 x Comp , v S f R Cn S | f k v
42 38 41 eqtr4i ran k x 𝒫 R | R 𝑡 x Comp , v S f R Cn S | f k v = topGen fi ran k x 𝒫 R | R 𝑡 x Comp , v S f R Cn S | f k v
43 29 30 42 3eqtr4g R Top S Top J = ran k x 𝒫 R | R 𝑡 x Comp , v S f R Cn S | f k v
44 35 a1i R Top S Top ran k x 𝒫 R | R 𝑡 x Comp , v S f R Cn S | f k v 𝒫 R Cn S
45 sspwuni ran k x 𝒫 R | R 𝑡 x Comp , v S f R Cn S | f k v 𝒫 R Cn S ran k x 𝒫 R | R 𝑡 x Comp , v S f R Cn S | f k v R Cn S
46 44 45 sylib R Top S Top ran k x 𝒫 R | R 𝑡 x Comp , v S f R Cn S | f k v R Cn S
47 43 46 eqsstrd R Top S Top J R Cn S
48 25 47 eqssd R Top S Top R Cn S = J