Metamath Proof Explorer


Theorem xle2addd

Description: Adding both side of two inequalities. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses xle2addd.1 φA*
xle2addd.2 φB*
xle2addd.3 φC*
xle2addd.4 φD*
xle2addd.5 φAC
xrle2addd.6 φBD
Assertion xle2addd φA+𝑒BC+𝑒D

Proof

Step Hyp Ref Expression
1 xle2addd.1 φA*
2 xle2addd.2 φB*
3 xle2addd.3 φC*
4 xle2addd.4 φD*
5 xle2addd.5 φAC
6 xrle2addd.6 φBD
7 1 2 xaddcld φA+𝑒B*
8 1 4 xaddcld φA+𝑒D*
9 3 4 xaddcld φC+𝑒D*
10 2 4 1 6 xleadd2d φA+𝑒BA+𝑒D
11 1 3 4 5 xleadd1d φA+𝑒DC+𝑒D
12 7 8 9 10 11 xrletrd φA+𝑒BC+𝑒D