Metamath Proof Explorer


Theorem xltmul2

Description: Extended real version of ltmul2 . (Contributed by Mario Carneiro, 8-Sep-2015)

Ref Expression
Assertion xltmul2 A*B*C+A<BC𝑒A<C𝑒B

Proof

Step Hyp Ref Expression
1 xltmul1 A*B*C+A<BA𝑒C<B𝑒C
2 rpxr C+C*
3 xmulcom A*C*A𝑒C=C𝑒A
4 3 3adant2 A*B*C*A𝑒C=C𝑒A
5 xmulcom B*C*B𝑒C=C𝑒B
6 5 3adant1 A*B*C*B𝑒C=C𝑒B
7 4 6 breq12d A*B*C*A𝑒C<B𝑒CC𝑒A<C𝑒B
8 2 7 syl3an3 A*B*C+A𝑒C<B𝑒CC𝑒A<C𝑒B
9 1 8 bitrd A*B*C+A<BC𝑒A<C𝑒B