Metamath Proof Explorer


Theorem xmettri2

Description: Triangle inequality for the distance function of an extended metric. (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion xmettri2 D ∞Met X C X A X B X A D B C D A + 𝑒 C D B

Proof

Step Hyp Ref Expression
1 elfvdm D ∞Met X X dom ∞Met
2 isxmet X dom ∞Met D ∞Met X D : X × X * x X y X x D y = 0 x = y z X x D y z D x + 𝑒 z D y
3 1 2 syl D ∞Met X D ∞Met X D : X × X * x X y X x D y = 0 x = y z X x D y z D x + 𝑒 z D y
4 3 ibi D ∞Met X D : X × X * x X y X x D y = 0 x = y z X x D y z D x + 𝑒 z D y
5 simpr x D y = 0 x = y z X x D y z D x + 𝑒 z D y z X x D y z D x + 𝑒 z D y
6 5 2ralimi x X y X x D y = 0 x = y z X x D y z D x + 𝑒 z D y x X y X z X x D y z D x + 𝑒 z D y
7 4 6 simpl2im D ∞Met X x X y X z X x D y z D x + 𝑒 z D y
8 oveq1 x = A x D y = A D y
9 oveq2 x = A z D x = z D A
10 9 oveq1d x = A z D x + 𝑒 z D y = z D A + 𝑒 z D y
11 8 10 breq12d x = A x D y z D x + 𝑒 z D y A D y z D A + 𝑒 z D y
12 oveq2 y = B A D y = A D B
13 oveq2 y = B z D y = z D B
14 13 oveq2d y = B z D A + 𝑒 z D y = z D A + 𝑒 z D B
15 12 14 breq12d y = B A D y z D A + 𝑒 z D y A D B z D A + 𝑒 z D B
16 oveq1 z = C z D A = C D A
17 oveq1 z = C z D B = C D B
18 16 17 oveq12d z = C z D A + 𝑒 z D B = C D A + 𝑒 C D B
19 18 breq2d z = C A D B z D A + 𝑒 z D B A D B C D A + 𝑒 C D B
20 11 15 19 rspc3v A X B X C X x X y X z X x D y z D x + 𝑒 z D y A D B C D A + 𝑒 C D B
21 7 20 syl5 A X B X C X D ∞Met X A D B C D A + 𝑒 C D B
22 21 3comr C X A X B X D ∞Met X A D B C D A + 𝑒 C D B
23 22 impcom D ∞Met X C X A X B X A D B C D A + 𝑒 C D B