Step |
Hyp |
Ref |
Expression |
1 |
|
elfvdm |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝑋 ∈ dom ∞Met ) |
2 |
|
isxmet |
⊢ ( 𝑋 ∈ dom ∞Met → ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ↔ ( 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( ( 𝑥 𝐷 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝑋 ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) ) ) ) |
3 |
1 2
|
syl |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ↔ ( 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( ( 𝑥 𝐷 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝑋 ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) ) ) ) |
4 |
3
|
ibi |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( ( 𝑥 𝐷 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝑋 ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) ) ) |
5 |
|
simpr |
⊢ ( ( ( ( 𝑥 𝐷 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝑋 ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) → ∀ 𝑧 ∈ 𝑋 ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) |
6 |
5
|
2ralimi |
⊢ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( ( 𝑥 𝐷 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝑋 ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) |
7 |
4 6
|
simpl2im |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) |
8 |
|
oveq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 𝐷 𝑦 ) = ( 𝐴 𝐷 𝑦 ) ) |
9 |
|
oveq2 |
⊢ ( 𝑥 = 𝐴 → ( 𝑧 𝐷 𝑥 ) = ( 𝑧 𝐷 𝐴 ) ) |
10 |
9
|
oveq1d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) = ( ( 𝑧 𝐷 𝐴 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) |
11 |
8 10
|
breq12d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ↔ ( 𝐴 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝐴 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) ) |
12 |
|
oveq2 |
⊢ ( 𝑦 = 𝐵 → ( 𝐴 𝐷 𝑦 ) = ( 𝐴 𝐷 𝐵 ) ) |
13 |
|
oveq2 |
⊢ ( 𝑦 = 𝐵 → ( 𝑧 𝐷 𝑦 ) = ( 𝑧 𝐷 𝐵 ) ) |
14 |
13
|
oveq2d |
⊢ ( 𝑦 = 𝐵 → ( ( 𝑧 𝐷 𝐴 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) = ( ( 𝑧 𝐷 𝐴 ) +𝑒 ( 𝑧 𝐷 𝐵 ) ) ) |
15 |
12 14
|
breq12d |
⊢ ( 𝑦 = 𝐵 → ( ( 𝐴 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝐴 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ↔ ( 𝐴 𝐷 𝐵 ) ≤ ( ( 𝑧 𝐷 𝐴 ) +𝑒 ( 𝑧 𝐷 𝐵 ) ) ) ) |
16 |
|
oveq1 |
⊢ ( 𝑧 = 𝐶 → ( 𝑧 𝐷 𝐴 ) = ( 𝐶 𝐷 𝐴 ) ) |
17 |
|
oveq1 |
⊢ ( 𝑧 = 𝐶 → ( 𝑧 𝐷 𝐵 ) = ( 𝐶 𝐷 𝐵 ) ) |
18 |
16 17
|
oveq12d |
⊢ ( 𝑧 = 𝐶 → ( ( 𝑧 𝐷 𝐴 ) +𝑒 ( 𝑧 𝐷 𝐵 ) ) = ( ( 𝐶 𝐷 𝐴 ) +𝑒 ( 𝐶 𝐷 𝐵 ) ) ) |
19 |
18
|
breq2d |
⊢ ( 𝑧 = 𝐶 → ( ( 𝐴 𝐷 𝐵 ) ≤ ( ( 𝑧 𝐷 𝐴 ) +𝑒 ( 𝑧 𝐷 𝐵 ) ) ↔ ( 𝐴 𝐷 𝐵 ) ≤ ( ( 𝐶 𝐷 𝐴 ) +𝑒 ( 𝐶 𝐷 𝐵 ) ) ) ) |
20 |
11 15 19
|
rspc3v |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) → ( 𝐴 𝐷 𝐵 ) ≤ ( ( 𝐶 𝐷 𝐴 ) +𝑒 ( 𝐶 𝐷 𝐵 ) ) ) ) |
21 |
7 20
|
syl5 |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝐴 𝐷 𝐵 ) ≤ ( ( 𝐶 𝐷 𝐴 ) +𝑒 ( 𝐶 𝐷 𝐵 ) ) ) ) |
22 |
21
|
3comr |
⊢ ( ( 𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝐴 𝐷 𝐵 ) ≤ ( ( 𝐶 𝐷 𝐴 ) +𝑒 ( 𝐶 𝐷 𝐵 ) ) ) ) |
23 |
22
|
impcom |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝐴 𝐷 𝐵 ) ≤ ( ( 𝐶 𝐷 𝐴 ) +𝑒 ( 𝐶 𝐷 𝐵 ) ) ) |