Step |
Hyp |
Ref |
Expression |
1 |
|
elex |
β’ ( π β π΄ β π β V ) |
2 |
|
xpeq12 |
β’ ( ( π‘ = π β§ π‘ = π ) β ( π‘ Γ π‘ ) = ( π Γ π ) ) |
3 |
2
|
anidms |
β’ ( π‘ = π β ( π‘ Γ π‘ ) = ( π Γ π ) ) |
4 |
3
|
oveq2d |
β’ ( π‘ = π β ( β* βm ( π‘ Γ π‘ ) ) = ( β* βm ( π Γ π ) ) ) |
5 |
|
raleq |
β’ ( π‘ = π β ( β π§ β π‘ ( π₯ π π¦ ) β€ ( ( π§ π π₯ ) +π ( π§ π π¦ ) ) β β π§ β π ( π₯ π π¦ ) β€ ( ( π§ π π₯ ) +π ( π§ π π¦ ) ) ) ) |
6 |
5
|
anbi2d |
β’ ( π‘ = π β ( ( ( ( π₯ π π¦ ) = 0 β π₯ = π¦ ) β§ β π§ β π‘ ( π₯ π π¦ ) β€ ( ( π§ π π₯ ) +π ( π§ π π¦ ) ) ) β ( ( ( π₯ π π¦ ) = 0 β π₯ = π¦ ) β§ β π§ β π ( π₯ π π¦ ) β€ ( ( π§ π π₯ ) +π ( π§ π π¦ ) ) ) ) ) |
7 |
6
|
raleqbi1dv |
β’ ( π‘ = π β ( β π¦ β π‘ ( ( ( π₯ π π¦ ) = 0 β π₯ = π¦ ) β§ β π§ β π‘ ( π₯ π π¦ ) β€ ( ( π§ π π₯ ) +π ( π§ π π¦ ) ) ) β β π¦ β π ( ( ( π₯ π π¦ ) = 0 β π₯ = π¦ ) β§ β π§ β π ( π₯ π π¦ ) β€ ( ( π§ π π₯ ) +π ( π§ π π¦ ) ) ) ) ) |
8 |
7
|
raleqbi1dv |
β’ ( π‘ = π β ( β π₯ β π‘ β π¦ β π‘ ( ( ( π₯ π π¦ ) = 0 β π₯ = π¦ ) β§ β π§ β π‘ ( π₯ π π¦ ) β€ ( ( π§ π π₯ ) +π ( π§ π π¦ ) ) ) β β π₯ β π β π¦ β π ( ( ( π₯ π π¦ ) = 0 β π₯ = π¦ ) β§ β π§ β π ( π₯ π π¦ ) β€ ( ( π§ π π₯ ) +π ( π§ π π¦ ) ) ) ) ) |
9 |
4 8
|
rabeqbidv |
β’ ( π‘ = π β { π β ( β* βm ( π‘ Γ π‘ ) ) β£ β π₯ β π‘ β π¦ β π‘ ( ( ( π₯ π π¦ ) = 0 β π₯ = π¦ ) β§ β π§ β π‘ ( π₯ π π¦ ) β€ ( ( π§ π π₯ ) +π ( π§ π π¦ ) ) ) } = { π β ( β* βm ( π Γ π ) ) β£ β π₯ β π β π¦ β π ( ( ( π₯ π π¦ ) = 0 β π₯ = π¦ ) β§ β π§ β π ( π₯ π π¦ ) β€ ( ( π§ π π₯ ) +π ( π§ π π¦ ) ) ) } ) |
10 |
|
df-xmet |
β’ βMet = ( π‘ β V β¦ { π β ( β* βm ( π‘ Γ π‘ ) ) β£ β π₯ β π‘ β π¦ β π‘ ( ( ( π₯ π π¦ ) = 0 β π₯ = π¦ ) β§ β π§ β π‘ ( π₯ π π¦ ) β€ ( ( π§ π π₯ ) +π ( π§ π π¦ ) ) ) } ) |
11 |
|
ovex |
β’ ( β* βm ( π Γ π ) ) β V |
12 |
11
|
rabex |
β’ { π β ( β* βm ( π Γ π ) ) β£ β π₯ β π β π¦ β π ( ( ( π₯ π π¦ ) = 0 β π₯ = π¦ ) β§ β π§ β π ( π₯ π π¦ ) β€ ( ( π§ π π₯ ) +π ( π§ π π¦ ) ) ) } β V |
13 |
9 10 12
|
fvmpt |
β’ ( π β V β ( βMet β π ) = { π β ( β* βm ( π Γ π ) ) β£ β π₯ β π β π¦ β π ( ( ( π₯ π π¦ ) = 0 β π₯ = π¦ ) β§ β π§ β π ( π₯ π π¦ ) β€ ( ( π§ π π₯ ) +π ( π§ π π¦ ) ) ) } ) |
14 |
1 13
|
syl |
β’ ( π β π΄ β ( βMet β π ) = { π β ( β* βm ( π Γ π ) ) β£ β π₯ β π β π¦ β π ( ( ( π₯ π π¦ ) = 0 β π₯ = π¦ ) β§ β π§ β π ( π₯ π π¦ ) β€ ( ( π§ π π₯ ) +π ( π§ π π¦ ) ) ) } ) |
15 |
14
|
eleq2d |
β’ ( π β π΄ β ( π· β ( βMet β π ) β π· β { π β ( β* βm ( π Γ π ) ) β£ β π₯ β π β π¦ β π ( ( ( π₯ π π¦ ) = 0 β π₯ = π¦ ) β§ β π§ β π ( π₯ π π¦ ) β€ ( ( π§ π π₯ ) +π ( π§ π π¦ ) ) ) } ) ) |
16 |
|
oveq |
β’ ( π = π· β ( π₯ π π¦ ) = ( π₯ π· π¦ ) ) |
17 |
16
|
eqeq1d |
β’ ( π = π· β ( ( π₯ π π¦ ) = 0 β ( π₯ π· π¦ ) = 0 ) ) |
18 |
17
|
bibi1d |
β’ ( π = π· β ( ( ( π₯ π π¦ ) = 0 β π₯ = π¦ ) β ( ( π₯ π· π¦ ) = 0 β π₯ = π¦ ) ) ) |
19 |
|
oveq |
β’ ( π = π· β ( π§ π π₯ ) = ( π§ π· π₯ ) ) |
20 |
|
oveq |
β’ ( π = π· β ( π§ π π¦ ) = ( π§ π· π¦ ) ) |
21 |
19 20
|
oveq12d |
β’ ( π = π· β ( ( π§ π π₯ ) +π ( π§ π π¦ ) ) = ( ( π§ π· π₯ ) +π ( π§ π· π¦ ) ) ) |
22 |
16 21
|
breq12d |
β’ ( π = π· β ( ( π₯ π π¦ ) β€ ( ( π§ π π₯ ) +π ( π§ π π¦ ) ) β ( π₯ π· π¦ ) β€ ( ( π§ π· π₯ ) +π ( π§ π· π¦ ) ) ) ) |
23 |
22
|
ralbidv |
β’ ( π = π· β ( β π§ β π ( π₯ π π¦ ) β€ ( ( π§ π π₯ ) +π ( π§ π π¦ ) ) β β π§ β π ( π₯ π· π¦ ) β€ ( ( π§ π· π₯ ) +π ( π§ π· π¦ ) ) ) ) |
24 |
18 23
|
anbi12d |
β’ ( π = π· β ( ( ( ( π₯ π π¦ ) = 0 β π₯ = π¦ ) β§ β π§ β π ( π₯ π π¦ ) β€ ( ( π§ π π₯ ) +π ( π§ π π¦ ) ) ) β ( ( ( π₯ π· π¦ ) = 0 β π₯ = π¦ ) β§ β π§ β π ( π₯ π· π¦ ) β€ ( ( π§ π· π₯ ) +π ( π§ π· π¦ ) ) ) ) ) |
25 |
24
|
2ralbidv |
β’ ( π = π· β ( β π₯ β π β π¦ β π ( ( ( π₯ π π¦ ) = 0 β π₯ = π¦ ) β§ β π§ β π ( π₯ π π¦ ) β€ ( ( π§ π π₯ ) +π ( π§ π π¦ ) ) ) β β π₯ β π β π¦ β π ( ( ( π₯ π· π¦ ) = 0 β π₯ = π¦ ) β§ β π§ β π ( π₯ π· π¦ ) β€ ( ( π§ π· π₯ ) +π ( π§ π· π¦ ) ) ) ) ) |
26 |
25
|
elrab |
β’ ( π· β { π β ( β* βm ( π Γ π ) ) β£ β π₯ β π β π¦ β π ( ( ( π₯ π π¦ ) = 0 β π₯ = π¦ ) β§ β π§ β π ( π₯ π π¦ ) β€ ( ( π§ π π₯ ) +π ( π§ π π¦ ) ) ) } β ( π· β ( β* βm ( π Γ π ) ) β§ β π₯ β π β π¦ β π ( ( ( π₯ π· π¦ ) = 0 β π₯ = π¦ ) β§ β π§ β π ( π₯ π· π¦ ) β€ ( ( π§ π· π₯ ) +π ( π§ π· π¦ ) ) ) ) ) |
27 |
15 26
|
bitrdi |
β’ ( π β π΄ β ( π· β ( βMet β π ) β ( π· β ( β* βm ( π Γ π ) ) β§ β π₯ β π β π¦ β π ( ( ( π₯ π· π¦ ) = 0 β π₯ = π¦ ) β§ β π§ β π ( π₯ π· π¦ ) β€ ( ( π§ π· π₯ ) +π ( π§ π· π¦ ) ) ) ) ) ) |
28 |
|
xrex |
β’ β* β V |
29 |
|
sqxpexg |
β’ ( π β π΄ β ( π Γ π ) β V ) |
30 |
|
elmapg |
β’ ( ( β* β V β§ ( π Γ π ) β V ) β ( π· β ( β* βm ( π Γ π ) ) β π· : ( π Γ π ) βΆ β* ) ) |
31 |
28 29 30
|
sylancr |
β’ ( π β π΄ β ( π· β ( β* βm ( π Γ π ) ) β π· : ( π Γ π ) βΆ β* ) ) |
32 |
31
|
anbi1d |
β’ ( π β π΄ β ( ( π· β ( β* βm ( π Γ π ) ) β§ β π₯ β π β π¦ β π ( ( ( π₯ π· π¦ ) = 0 β π₯ = π¦ ) β§ β π§ β π ( π₯ π· π¦ ) β€ ( ( π§ π· π₯ ) +π ( π§ π· π¦ ) ) ) ) β ( π· : ( π Γ π ) βΆ β* β§ β π₯ β π β π¦ β π ( ( ( π₯ π· π¦ ) = 0 β π₯ = π¦ ) β§ β π§ β π ( π₯ π· π¦ ) β€ ( ( π§ π· π₯ ) +π ( π§ π· π¦ ) ) ) ) ) ) |
33 |
27 32
|
bitrd |
β’ ( π β π΄ β ( π· β ( βMet β π ) β ( π· : ( π Γ π ) βΆ β* β§ β π₯ β π β π¦ β π ( ( ( π₯ π· π¦ ) = 0 β π₯ = π¦ ) β§ β π§ β π ( π₯ π· π¦ ) β€ ( ( π§ π· π₯ ) +π ( π§ π· π¦ ) ) ) ) ) ) |