Metamath Proof Explorer


Theorem xmul01

Description: Extended real version of mul01 . (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion xmul01 A*A𝑒0=0

Proof

Step Hyp Ref Expression
1 0xr 0*
2 xmulval A*0*A𝑒0=ifA=00=00if0<0A=+∞0<0A=−∞0<A0=+∞A<00=−∞+∞if0<0A=−∞0<0A=+∞0<A0=−∞A<00=+∞−∞A0
3 1 2 mpan2 A*A𝑒0=ifA=00=00if0<0A=+∞0<0A=−∞0<A0=+∞A<00=−∞+∞if0<0A=−∞0<0A=+∞0<A0=−∞A<00=+∞−∞A0
4 eqid 0=0
5 4 olci A=00=0
6 5 iftruei ifA=00=00if0<0A=+∞0<0A=−∞0<A0=+∞A<00=−∞+∞if0<0A=−∞0<0A=+∞0<A0=−∞A<00=+∞−∞A0=0
7 3 6 eqtrdi A*A𝑒0=0