Metamath Proof Explorer


Theorem xmulpnf2

Description: Multiplication by plus infinity on the left. (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion xmulpnf2 A*0<A+∞𝑒A=+∞

Proof

Step Hyp Ref Expression
1 pnfxr +∞*
2 xmulcom +∞*A*+∞𝑒A=A𝑒+∞
3 1 2 mpan A*+∞𝑒A=A𝑒+∞
4 3 adantr A*0<A+∞𝑒A=A𝑒+∞
5 xmulpnf1 A*0<AA𝑒+∞=+∞
6 4 5 eqtrd A*0<A+∞𝑒A=+∞