Metamath Proof Explorer


Theorem xnegre

Description: An extended real is real if and only if its extended negative is real. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Assertion xnegre A*AA

Proof

Step Hyp Ref Expression
1 xnegrecl AA
2 1 adantl A*AA
3 xnegrecl2 A*AA
4 2 3 impbida A*AA