Metamath Proof Explorer


Theorem xnn0nn0d

Description: Conditions for an extended nonnegative integer to be a nonnegative integer. (Contributed by Thierry Arnoux, 26-Oct-2025)

Ref Expression
Hypotheses xnn0nnd.1 φ N 0 *
xnn0nnd.2 φ N
Assertion xnn0nn0d φ N 0

Proof

Step Hyp Ref Expression
1 xnn0nnd.1 φ N 0 *
2 xnn0nnd.2 φ N
3 elxnn0 N 0 * N 0 N = +∞
4 1 3 sylib φ N 0 N = +∞
5 2 renepnfd φ N +∞
6 5 neneqd φ ¬ N = +∞
7 4 6 olcnd φ N 0