Metamath Proof Explorer


Theorem xnpcan

Description: Extended real version of npcan . (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion xnpcan A*BA+𝑒B+𝑒B=A

Proof

Step Hyp Ref Expression
1 rexr BB*
2 xnegneg B*B=B
3 1 2 syl BB=B
4 3 adantl A*BB=B
5 4 oveq2d A*BA+𝑒B+𝑒B=A+𝑒B+𝑒B
6 rexneg BB=B
7 renegcl BB
8 6 7 eqeltrd BB
9 xpncan A*BA+𝑒B+𝑒B=A
10 8 9 sylan2 A*BA+𝑒B+𝑒B=A
11 5 10 eqtr3d A*BA+𝑒B+𝑒B=A