Metamath Proof Explorer


Theorem xpdom3

Description: A set is dominated by its Cartesian product with a nonempty set. Exercise 6 of Suppes p. 98. (Contributed by NM, 27-Jul-2004) (Revised by Mario Carneiro, 29-Apr-2015)

Ref Expression
Assertion xpdom3 AVBWBAA×B

Proof

Step Hyp Ref Expression
1 n0 BxxB
2 xpsneng AVxBA×xA
3 2 3adant2 AVBWxBA×xA
4 3 ensymd AVBWxBAA×x
5 xpexg AVBWA×BV
6 5 3adant3 AVBWxBA×BV
7 simp3 AVBWxBxB
8 7 snssd AVBWxBxB
9 xpss2 xBA×xA×B
10 8 9 syl AVBWxBA×xA×B
11 ssdomg A×BVA×xA×BA×xA×B
12 6 10 11 sylc AVBWxBA×xA×B
13 endomtr AA×xA×xA×BAA×B
14 4 12 13 syl2anc AVBWxBAA×B
15 14 3expia AVBWxBAA×B
16 15 exlimdv AVBWxxBAA×B
17 1 16 biimtrid AVBWBAA×B
18 17 3impia AVBWBAA×B