Metamath Proof Explorer


Theorem xpintrreld

Description: The intersection of a transitive relation with a Cartesian product is a transitive relation. (Contributed by RP, 24-Dec-2019)

Ref Expression
Hypotheses xpintrreld.r φ R R R
xpintrreld.s φ S = R A × B
Assertion xpintrreld φ S S S

Proof

Step Hyp Ref Expression
1 xpintrreld.r φ R R R
2 xpintrreld.s φ S = R A × B
3 xptrrel A × B A × B A × B
4 3 a1i φ A × B A × B A × B
5 1 4 2 trrelind φ S S S