Description: Induction over the triple Cartesian product ordering. Note that the substitutions cover all possible cases of membership in the predecessor class. (Contributed by Scott Fenton, 4-Sep-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | xpord3ind.1 | |
|
xpord3ind.2 | |
||
xpord3ind.3 | |
||
xpord3ind.4 | |
||
xpord3ind.5 | |
||
xpord3ind.6 | |
||
xpord3ind.7 | |
||
xpord3ind.8 | |
||
xpord3ind.9 | |
||
xpord3ind.10 | |
||
xpord3ind.11 | |
||
xpord3ind.12 | |
||
xpord3ind.13 | |
||
xpord3ind.14 | |
||
xpord3ind.15 | |
||
xpord3ind.16 | |
||
xpord3ind.17 | |
||
xpord3ind.18 | |
||
xpord3ind.19 | |
||
xpord3ind.i | |
||
Assertion | xpord3ind | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpord3ind.1 | |
|
2 | xpord3ind.2 | |
|
3 | xpord3ind.3 | |
|
4 | xpord3ind.4 | |
|
5 | xpord3ind.5 | |
|
6 | xpord3ind.6 | |
|
7 | xpord3ind.7 | |
|
8 | xpord3ind.8 | |
|
9 | xpord3ind.9 | |
|
10 | xpord3ind.10 | |
|
11 | xpord3ind.11 | |
|
12 | xpord3ind.12 | |
|
13 | xpord3ind.13 | |
|
14 | xpord3ind.14 | |
|
15 | xpord3ind.15 | |
|
16 | xpord3ind.16 | |
|
17 | xpord3ind.17 | |
|
18 | xpord3ind.18 | |
|
19 | xpord3ind.19 | |
|
20 | xpord3ind.i | |
|
21 | simp1 | |
|
22 | simp2 | |
|
23 | simp3 | |
|
24 | ax-1 | |
|
25 | 1 24 | ax-mp | |
26 | 2 | a1i | |
27 | 3 | a1i | |
28 | 4 | a1i | |
29 | 5 | a1i | |
30 | 6 | a1i | |
31 | 7 | a1i | |
32 | 8 | a1i | |
33 | 9 | a1i | |
34 | 20 | adantl | |
35 | 21 22 23 25 26 27 28 29 30 31 32 33 10 11 12 13 14 15 16 17 18 19 34 | xpord3indd | |