Metamath Proof Explorer


Theorem xpord3ind

Description: Induction over the triple Cartesian product ordering. Note that the substitutions cover all possible cases of membership in the predecessor class. (Contributed by Scott Fenton, 4-Sep-2024)

Ref Expression
Hypotheses xpord3ind.1 RFrA
xpord3ind.2 RPoA
xpord3ind.3 RSeA
xpord3ind.4 SFrB
xpord3ind.5 SPoB
xpord3ind.6 SSeB
xpord3ind.7 TFrC
xpord3ind.8 TPoC
xpord3ind.9 TSeC
xpord3ind.10 a=dφψ
xpord3ind.11 b=eψχ
xpord3ind.12 c=fχθ
xpord3ind.13 a=dτθ
xpord3ind.14 b=eητ
xpord3ind.15 b=eζθ
xpord3ind.16 c=fστ
xpord3ind.17 a=Xφρ
xpord3ind.18 b=Yρμ
xpord3ind.19 c=Zμλ
xpord3ind.i aAbBcCdPredRAaePredSBbfPredTCcθdPredRAaePredSBbχdPredRAafPredTCcζdPredRAaψePredSBbfPredTCcτePredSBbσfPredTCcηφ
Assertion xpord3ind XAYBZCλ

Proof

Step Hyp Ref Expression
1 xpord3ind.1 RFrA
2 xpord3ind.2 RPoA
3 xpord3ind.3 RSeA
4 xpord3ind.4 SFrB
5 xpord3ind.5 SPoB
6 xpord3ind.6 SSeB
7 xpord3ind.7 TFrC
8 xpord3ind.8 TPoC
9 xpord3ind.9 TSeC
10 xpord3ind.10 a=dφψ
11 xpord3ind.11 b=eψχ
12 xpord3ind.12 c=fχθ
13 xpord3ind.13 a=dτθ
14 xpord3ind.14 b=eητ
15 xpord3ind.15 b=eζθ
16 xpord3ind.16 c=fστ
17 xpord3ind.17 a=Xφρ
18 xpord3ind.18 b=Yρμ
19 xpord3ind.19 c=Zμλ
20 xpord3ind.i aAbBcCdPredRAaePredSBbfPredTCcθdPredRAaePredSBbχdPredRAafPredTCcζdPredRAaψePredSBbfPredTCcτePredSBbσfPredTCcηφ
21 simp1 XAYBZCXA
22 simp2 XAYBZCYB
23 simp3 XAYBZCZC
24 ax-1 RFrAXAYBZCRFrA
25 1 24 ax-mp XAYBZCRFrA
26 2 a1i XAYBZCRPoA
27 3 a1i XAYBZCRSeA
28 4 a1i XAYBZCSFrB
29 5 a1i XAYBZCSPoB
30 6 a1i XAYBZCSSeB
31 7 a1i XAYBZCTFrC
32 8 a1i XAYBZCTPoC
33 9 a1i XAYBZCTSeC
34 20 adantl XAYBZCaAbBcCdPredRAaePredSBbfPredTCcθdPredRAaePredSBbχdPredRAafPredTCcζdPredRAaψePredSBbfPredTCcτePredSBbσfPredTCcηφ
35 21 22 23 25 26 27 28 29 30 31 32 33 10 11 12 13 14 15 16 17 18 19 34 xpord3indd XAYBZCλ