Metamath Proof Explorer


Theorem xpscf

Description: Equivalent condition for the pair function to be a proper function on A . (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion xpscf X1𝑜Y:2𝑜AXAYA

Proof

Step Hyp Ref Expression
1 ifid ifk=AA=A
2 1 eleq2i X1𝑜Ykifk=AAX1𝑜YkA
3 2 ralbii k2𝑜X1𝑜Ykifk=AAk2𝑜X1𝑜YkA
4 3 anbi2i X1𝑜YFn2𝑜k2𝑜X1𝑜Ykifk=AAX1𝑜YFn2𝑜k2𝑜X1𝑜YkA
5 df-3an X1𝑜YVX1𝑜YFn2𝑜k2𝑜X1𝑜Ykifk=AAX1𝑜YVX1𝑜YFn2𝑜k2𝑜X1𝑜Ykifk=AA
6 elixp2 X1𝑜Yk2𝑜ifk=AAX1𝑜YVX1𝑜YFn2𝑜k2𝑜X1𝑜Ykifk=AA
7 2onn 2𝑜ω
8 fnex X1𝑜YFn2𝑜2𝑜ωX1𝑜YV
9 7 8 mpan2 X1𝑜YFn2𝑜X1𝑜YV
10 9 pm4.71ri X1𝑜YFn2𝑜X1𝑜YVX1𝑜YFn2𝑜
11 10 anbi1i X1𝑜YFn2𝑜k2𝑜X1𝑜Ykifk=AAX1𝑜YVX1𝑜YFn2𝑜k2𝑜X1𝑜Ykifk=AA
12 5 6 11 3bitr4i X1𝑜Yk2𝑜ifk=AAX1𝑜YFn2𝑜k2𝑜X1𝑜Ykifk=AA
13 ffnfv X1𝑜Y:2𝑜AX1𝑜YFn2𝑜k2𝑜X1𝑜YkA
14 4 12 13 3bitr4i X1𝑜Yk2𝑜ifk=AAX1𝑜Y:2𝑜A
15 xpsfrnel2 X1𝑜Yk2𝑜ifk=AAXAYA
16 14 15 bitr3i X1𝑜Y:2𝑜AXAYA