Metamath Proof Explorer


Theorem xpsless

Description: Closure of the ordering in a binary structure product. (Contributed by Mario Carneiro, 15-Aug-2015)

Ref Expression
Hypotheses xpsle.t T=R×𝑠S
xpsle.x X=BaseR
xpsle.y Y=BaseS
xpsle.1 φRV
xpsle.2 φSW
xpsle.p ˙=T
Assertion xpsless φ˙X×Y×X×Y

Proof

Step Hyp Ref Expression
1 xpsle.t T=R×𝑠S
2 xpsle.x X=BaseR
3 xpsle.y Y=BaseS
4 xpsle.1 φRV
5 xpsle.2 φSW
6 xpsle.p ˙=T
7 eqid xX,yYx1𝑜y=xX,yYx1𝑜y
8 eqid ScalarR=ScalarR
9 eqid ScalarR𝑠R1𝑜S=ScalarR𝑠R1𝑜S
10 1 2 3 4 5 7 8 9 xpsval φT=xX,yYx1𝑜y-1𝑠ScalarR𝑠R1𝑜S
11 1 2 3 4 5 7 8 9 xpsrnbas φranxX,yYx1𝑜y=BaseScalarR𝑠R1𝑜S
12 7 xpsff1o2 xX,yYx1𝑜y:X×Y1-1 ontoranxX,yYx1𝑜y
13 f1ocnv xX,yYx1𝑜y:X×Y1-1 ontoranxX,yYx1𝑜yxX,yYx1𝑜y-1:ranxX,yYx1𝑜y1-1 ontoX×Y
14 12 13 mp1i φxX,yYx1𝑜y-1:ranxX,yYx1𝑜y1-1 ontoX×Y
15 f1ofo xX,yYx1𝑜y-1:ranxX,yYx1𝑜y1-1 ontoX×YxX,yYx1𝑜y-1:ranxX,yYx1𝑜yontoX×Y
16 14 15 syl φxX,yYx1𝑜y-1:ranxX,yYx1𝑜yontoX×Y
17 ovexd φScalarR𝑠R1𝑜SV
18 10 11 16 17 6 imasless φ˙X×Y×X×Y