Metamath Proof Explorer


Theorem imasless

Description: The order relation defined on an image set is a subset of the base set. (Contributed by Mario Carneiro, 24-Feb-2015)

Ref Expression
Hypotheses imasless.u φU=F𝑠R
imasless.v φV=BaseR
imasless.f φF:VontoB
imasless.r φRZ
imasless.l ˙=U
Assertion imasless φ˙B×B

Proof

Step Hyp Ref Expression
1 imasless.u φU=F𝑠R
2 imasless.v φV=BaseR
3 imasless.f φF:VontoB
4 imasless.r φRZ
5 imasless.l ˙=U
6 eqid R=R
7 1 2 3 4 6 5 imasle φ˙=FRF-1
8 relco RelFRF-1
9 relssdmrn RelFRF-1FRF-1domFRF-1×ranFRF-1
10 8 9 ax-mp FRF-1domFRF-1×ranFRF-1
11 dmco domFRF-1=F-1-1domFR
12 fof F:VontoBF:VB
13 frel F:VBRelF
14 3 12 13 3syl φRelF
15 dfrel2 RelFF-1-1=F
16 14 15 sylib φF-1-1=F
17 16 imaeq1d φF-1-1domFR=FdomFR
18 imassrn FdomFRranF
19 forn F:VontoBranF=B
20 3 19 syl φranF=B
21 18 20 sseqtrid φFdomFRB
22 17 21 eqsstrd φF-1-1domFRB
23 11 22 eqsstrid φdomFRF-1B
24 rncoss ranFRF-1ranFR
25 rnco2 ranFR=FranR
26 imassrn FranRranF
27 26 20 sseqtrid φFranRB
28 25 27 eqsstrid φranFRB
29 24 28 sstrid φranFRF-1B
30 xpss12 domFRF-1BranFRF-1BdomFRF-1×ranFRF-1B×B
31 23 29 30 syl2anc φdomFRF-1×ranFRF-1B×B
32 10 31 sstrid φFRF-1B×B
33 7 32 eqsstrd φ˙B×B