Description: The order relation defined on an image set is a subset of the base set. (Contributed by Mario Carneiro, 24-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | imasless.u | |
|
imasless.v | |
||
imasless.f | |
||
imasless.r | |
||
imasless.l | |
||
Assertion | imasless | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imasless.u | |
|
2 | imasless.v | |
|
3 | imasless.f | |
|
4 | imasless.r | |
|
5 | imasless.l | |
|
6 | eqid | |
|
7 | 1 2 3 4 6 5 | imasle | |
8 | relco | |
|
9 | relssdmrn | |
|
10 | 8 9 | ax-mp | |
11 | dmco | |
|
12 | fof | |
|
13 | frel | |
|
14 | 3 12 13 | 3syl | |
15 | dfrel2 | |
|
16 | 14 15 | sylib | |
17 | 16 | imaeq1d | |
18 | imassrn | |
|
19 | forn | |
|
20 | 3 19 | syl | |
21 | 18 20 | sseqtrid | |
22 | 17 21 | eqsstrd | |
23 | 11 22 | eqsstrid | |
24 | rncoss | |
|
25 | rnco2 | |
|
26 | imassrn | |
|
27 | 26 20 | sseqtrid | |
28 | 25 27 | eqsstrid | |
29 | 24 28 | sstrid | |
30 | xpss12 | |
|
31 | 23 29 30 | syl2anc | |
32 | 10 31 | sstrid | |
33 | 7 32 | eqsstrd | |