Metamath Proof Explorer


Theorem imasle

Description: The ordering of an image structure. (Contributed by Mario Carneiro, 23-Feb-2015)

Ref Expression
Hypotheses imasbas.u φU=F𝑠R
imasbas.v φV=BaseR
imasbas.f φF:VontoB
imasbas.r φRZ
imasle.n N=R
imasle.l ˙=U
Assertion imasle φ˙=FNF-1

Proof

Step Hyp Ref Expression
1 imasbas.u φU=F𝑠R
2 imasbas.v φV=BaseR
3 imasbas.f φF:VontoB
4 imasbas.r φRZ
5 imasle.n N=R
6 imasle.l ˙=U
7 eqid +R=+R
8 eqid R=R
9 eqid ScalarR=ScalarR
10 eqid BaseScalarR=BaseScalarR
11 eqid R=R
12 eqid 𝑖R=𝑖R
13 eqid TopOpenR=TopOpenR
14 eqid distR=distR
15 eqid +U=+U
16 1 2 3 4 7 15 imasplusg φ+U=pVqVFpFqFp+Rq
17 eqid U=U
18 1 2 3 4 8 17 imasmulr φU=pVqVFpFqFpRq
19 eqid U=U
20 1 2 3 4 9 10 11 19 imasvsca φU=qVpBaseScalarR,xFqFpRq
21 eqidd φpVqVFpFqp𝑖Rq=pVqVFpFqp𝑖Rq
22 eqid TopSetU=TopSetU
23 1 2 3 4 13 22 imastset φTopSetU=TopOpenRqTopF
24 eqid distU=distU
25 1 2 3 4 14 24 imasds φdistU=xB,yBsupuranzwV×V1u|F1stw1=xF2ndwu=yv1u1F2ndwv=F1stwv+1𝑠*distRz*<
26 eqidd φFNF-1=FNF-1
27 1 2 7 8 9 10 11 12 13 14 5 16 18 20 21 23 25 26 3 4 imasval φU=BasendxB+ndx+UndxUScalarndxScalarRndxU𝑖ndxpVqVFpFqp𝑖RqTopSetndxTopSetUndxFNF-1distndxdistU
28 eqid BasendxB+ndx+UndxUScalarndxScalarRndxU𝑖ndxpVqVFpFqp𝑖RqTopSetndxTopSetUndxFNF-1distndxdistU=BasendxB+ndx+UndxUScalarndxScalarRndxU𝑖ndxpVqVFpFqp𝑖RqTopSetndxTopSetUndxFNF-1distndxdistU
29 28 imasvalstr BasendxB+ndx+UndxUScalarndxScalarRndxU𝑖ndxpVqVFpFqp𝑖RqTopSetndxTopSetUndxFNF-1distndxdistUStruct112
30 pleid le=Slotndx
31 snsstp2 ndxFNF-1TopSetndxTopSetUndxFNF-1distndxdistU
32 ssun2 TopSetndxTopSetUndxFNF-1distndxdistUBasendxB+ndx+UndxUScalarndxScalarRndxU𝑖ndxpVqVFpFqp𝑖RqTopSetndxTopSetUndxFNF-1distndxdistU
33 31 32 sstri ndxFNF-1BasendxB+ndx+UndxUScalarndxScalarRndxU𝑖ndxpVqVFpFqp𝑖RqTopSetndxTopSetUndxFNF-1distndxdistU
34 fof F:VontoBF:VB
35 3 34 syl φF:VB
36 fvex BaseRV
37 2 36 eqeltrdi φVV
38 35 37 fexd φFV
39 5 fvexi NV
40 coexg FVNVFNV
41 38 39 40 sylancl φFNV
42 cnvexg FVF-1V
43 38 42 syl φF-1V
44 coexg FNVF-1VFNF-1V
45 41 43 44 syl2anc φFNF-1V
46 27 29 30 33 45 6 strfv3 φ˙=FNF-1