Metamath Proof Explorer


Theorem imasle

Description: The ordering of an image structure. (Contributed by Mario Carneiro, 23-Feb-2015)

Ref Expression
Hypotheses imasbas.u
|- ( ph -> U = ( F "s R ) )
imasbas.v
|- ( ph -> V = ( Base ` R ) )
imasbas.f
|- ( ph -> F : V -onto-> B )
imasbas.r
|- ( ph -> R e. Z )
imasle.n
|- N = ( le ` R )
imasle.l
|- .<_ = ( le ` U )
Assertion imasle
|- ( ph -> .<_ = ( ( F o. N ) o. `' F ) )

Proof

Step Hyp Ref Expression
1 imasbas.u
 |-  ( ph -> U = ( F "s R ) )
2 imasbas.v
 |-  ( ph -> V = ( Base ` R ) )
3 imasbas.f
 |-  ( ph -> F : V -onto-> B )
4 imasbas.r
 |-  ( ph -> R e. Z )
5 imasle.n
 |-  N = ( le ` R )
6 imasle.l
 |-  .<_ = ( le ` U )
7 eqid
 |-  ( +g ` R ) = ( +g ` R )
8 eqid
 |-  ( .r ` R ) = ( .r ` R )
9 eqid
 |-  ( Scalar ` R ) = ( Scalar ` R )
10 eqid
 |-  ( Base ` ( Scalar ` R ) ) = ( Base ` ( Scalar ` R ) )
11 eqid
 |-  ( .s ` R ) = ( .s ` R )
12 eqid
 |-  ( .i ` R ) = ( .i ` R )
13 eqid
 |-  ( TopOpen ` R ) = ( TopOpen ` R )
14 eqid
 |-  ( dist ` R ) = ( dist ` R )
15 eqid
 |-  ( +g ` U ) = ( +g ` U )
16 1 2 3 4 7 15 imasplusg
 |-  ( ph -> ( +g ` U ) = U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( F ` ( p ( +g ` R ) q ) ) >. } )
17 eqid
 |-  ( .r ` U ) = ( .r ` U )
18 1 2 3 4 8 17 imasmulr
 |-  ( ph -> ( .r ` U ) = U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( F ` ( p ( .r ` R ) q ) ) >. } )
19 eqid
 |-  ( .s ` U ) = ( .s ` U )
20 1 2 3 4 9 10 11 19 imasvsca
 |-  ( ph -> ( .s ` U ) = U_ q e. V ( p e. ( Base ` ( Scalar ` R ) ) , x e. { ( F ` q ) } |-> ( F ` ( p ( .s ` R ) q ) ) ) )
21 eqidd
 |-  ( ph -> U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( p ( .i ` R ) q ) >. } = U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( p ( .i ` R ) q ) >. } )
22 eqid
 |-  ( TopSet ` U ) = ( TopSet ` U )
23 1 2 3 4 13 22 imastset
 |-  ( ph -> ( TopSet ` U ) = ( ( TopOpen ` R ) qTop F ) )
24 eqid
 |-  ( dist ` U ) = ( dist ` U )
25 1 2 3 4 14 24 imasds
 |-  ( ph -> ( dist ` U ) = ( x e. B , y e. B |-> inf ( U_ u e. NN ran ( z e. { w e. ( ( V X. V ) ^m ( 1 ... u ) ) | ( ( F ` ( 1st ` ( w ` 1 ) ) ) = x /\ ( F ` ( 2nd ` ( w ` u ) ) ) = y /\ A. v e. ( 1 ... ( u - 1 ) ) ( F ` ( 2nd ` ( w ` v ) ) ) = ( F ` ( 1st ` ( w ` ( v + 1 ) ) ) ) ) } |-> ( RR*s gsum ( ( dist ` R ) o. z ) ) ) , RR* , < ) ) )
26 eqidd
 |-  ( ph -> ( ( F o. N ) o. `' F ) = ( ( F o. N ) o. `' F ) )
27 1 2 7 8 9 10 11 12 13 14 5 16 18 20 21 23 25 26 3 4 imasval
 |-  ( ph -> U = ( ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , ( +g ` U ) >. , <. ( .r ` ndx ) , ( .r ` U ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( .s ` U ) >. , <. ( .i ` ndx ) , U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( p ( .i ` R ) q ) >. } >. } ) u. { <. ( TopSet ` ndx ) , ( TopSet ` U ) >. , <. ( le ` ndx ) , ( ( F o. N ) o. `' F ) >. , <. ( dist ` ndx ) , ( dist ` U ) >. } ) )
28 eqid
 |-  ( ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , ( +g ` U ) >. , <. ( .r ` ndx ) , ( .r ` U ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( .s ` U ) >. , <. ( .i ` ndx ) , U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( p ( .i ` R ) q ) >. } >. } ) u. { <. ( TopSet ` ndx ) , ( TopSet ` U ) >. , <. ( le ` ndx ) , ( ( F o. N ) o. `' F ) >. , <. ( dist ` ndx ) , ( dist ` U ) >. } ) = ( ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , ( +g ` U ) >. , <. ( .r ` ndx ) , ( .r ` U ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( .s ` U ) >. , <. ( .i ` ndx ) , U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( p ( .i ` R ) q ) >. } >. } ) u. { <. ( TopSet ` ndx ) , ( TopSet ` U ) >. , <. ( le ` ndx ) , ( ( F o. N ) o. `' F ) >. , <. ( dist ` ndx ) , ( dist ` U ) >. } )
29 28 imasvalstr
 |-  ( ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , ( +g ` U ) >. , <. ( .r ` ndx ) , ( .r ` U ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( .s ` U ) >. , <. ( .i ` ndx ) , U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( p ( .i ` R ) q ) >. } >. } ) u. { <. ( TopSet ` ndx ) , ( TopSet ` U ) >. , <. ( le ` ndx ) , ( ( F o. N ) o. `' F ) >. , <. ( dist ` ndx ) , ( dist ` U ) >. } ) Struct <. 1 , ; 1 2 >.
30 pleid
 |-  le = Slot ( le ` ndx )
31 snsstp2
 |-  { <. ( le ` ndx ) , ( ( F o. N ) o. `' F ) >. } C_ { <. ( TopSet ` ndx ) , ( TopSet ` U ) >. , <. ( le ` ndx ) , ( ( F o. N ) o. `' F ) >. , <. ( dist ` ndx ) , ( dist ` U ) >. }
32 ssun2
 |-  { <. ( TopSet ` ndx ) , ( TopSet ` U ) >. , <. ( le ` ndx ) , ( ( F o. N ) o. `' F ) >. , <. ( dist ` ndx ) , ( dist ` U ) >. } C_ ( ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , ( +g ` U ) >. , <. ( .r ` ndx ) , ( .r ` U ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( .s ` U ) >. , <. ( .i ` ndx ) , U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( p ( .i ` R ) q ) >. } >. } ) u. { <. ( TopSet ` ndx ) , ( TopSet ` U ) >. , <. ( le ` ndx ) , ( ( F o. N ) o. `' F ) >. , <. ( dist ` ndx ) , ( dist ` U ) >. } )
33 31 32 sstri
 |-  { <. ( le ` ndx ) , ( ( F o. N ) o. `' F ) >. } C_ ( ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , ( +g ` U ) >. , <. ( .r ` ndx ) , ( .r ` U ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( .s ` U ) >. , <. ( .i ` ndx ) , U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( p ( .i ` R ) q ) >. } >. } ) u. { <. ( TopSet ` ndx ) , ( TopSet ` U ) >. , <. ( le ` ndx ) , ( ( F o. N ) o. `' F ) >. , <. ( dist ` ndx ) , ( dist ` U ) >. } )
34 fof
 |-  ( F : V -onto-> B -> F : V --> B )
35 3 34 syl
 |-  ( ph -> F : V --> B )
36 fvex
 |-  ( Base ` R ) e. _V
37 2 36 eqeltrdi
 |-  ( ph -> V e. _V )
38 35 37 fexd
 |-  ( ph -> F e. _V )
39 5 fvexi
 |-  N e. _V
40 coexg
 |-  ( ( F e. _V /\ N e. _V ) -> ( F o. N ) e. _V )
41 38 39 40 sylancl
 |-  ( ph -> ( F o. N ) e. _V )
42 cnvexg
 |-  ( F e. _V -> `' F e. _V )
43 38 42 syl
 |-  ( ph -> `' F e. _V )
44 coexg
 |-  ( ( ( F o. N ) e. _V /\ `' F e. _V ) -> ( ( F o. N ) o. `' F ) e. _V )
45 41 43 44 syl2anc
 |-  ( ph -> ( ( F o. N ) o. `' F ) e. _V )
46 27 29 30 33 45 6 strfv3
 |-  ( ph -> .<_ = ( ( F o. N ) o. `' F ) )