Metamath Proof Explorer


Theorem imasleval

Description: The value of the image structure's ordering when the order is compatible with the mapping function. (Contributed by Mario Carneiro, 24-Feb-2015)

Ref Expression
Hypotheses imasless.u φU=F𝑠R
imasless.v φV=BaseR
imasless.f φF:VontoB
imasless.r φRZ
imasless.l ˙=U
imasleval.n N=R
imasleval.e φaVbVcVdVFa=FcFb=FdaNbcNd
Assertion imasleval φXVYVFX˙FYXNY

Proof

Step Hyp Ref Expression
1 imasless.u φU=F𝑠R
2 imasless.v φV=BaseR
3 imasless.f φF:VontoB
4 imasless.r φRZ
5 imasless.l ˙=U
6 imasleval.n N=R
7 imasleval.e φaVbVcVdVFa=FcFb=FdaNbcNd
8 fveq2 c=XFc=FX
9 8 breq1d c=XFc˙FdFX˙Fd
10 breq1 c=XcNdXNd
11 9 10 bibi12d c=XFc˙FdcNdFX˙FdXNd
12 11 imbi2d c=XφFc˙FdcNdφFX˙FdXNd
13 fveq2 d=YFd=FY
14 13 breq2d d=YFX˙FdFX˙FY
15 breq2 d=YXNdXNY
16 14 15 bibi12d d=YFX˙FdXNdFX˙FYXNY
17 16 imbi2d d=YφFX˙FdXNdφFX˙FYXNY
18 fofn F:VontoBFFnV
19 3 18 syl φFFnV
20 19 adantr φcVdVFFnV
21 20 fndmd φcVdVdomF=V
22 21 rexeqdv φcVdVadomFaFFcaFNFdaVaFFcaFNFd
23 fnbrfvb FFnVaVFa=FcaFFc
24 20 23 sylan φcVdVaVFa=FcaFFc
25 24 anbi1d φcVdVaVFa=FcaFNFdaFFcaFNFd
26 ancom aNbbFFdbFFdaNb
27 vex bV
28 fvex FdV
29 27 28 breldm bFFdbdomF
30 29 adantr bFFdaNbbdomF
31 30 pm4.71ri bFFdaNbbdomFbFFdaNb
32 26 31 bitri aNbbFFdbdomFbFFdaNb
33 32 exbii baNbbFFdbbdomFbFFdaNb
34 vex aV
35 34 28 brco aFNFdbaNbbFFd
36 df-rex bdomFbFFdaNbbbdomFbFFdaNb
37 33 35 36 3bitr4i aFNFdbdomFbFFdaNb
38 20 ad2antrr φcVdVaVFa=FcFFnV
39 fnbrfvb FFnVbVFb=FdbFFd
40 38 39 sylan φcVdVaVFa=FcbVFb=FdbFFd
41 40 anbi1d φcVdVaVFa=FcbVFb=FdaNbbFFdaNb
42 7 3expa φaVbVcVdVFa=FcFb=FdaNbcNd
43 42 an32s φcVdVaVbVFa=FcFb=FdaNbcNd
44 43 anassrs φcVdVaVbVFa=FcFb=FdaNbcNd
45 44 impl φcVdVaVbVFa=FcFb=FdaNbcNd
46 45 pm5.32da φcVdVaVbVFa=FcFb=FdaNbFb=FdcNd
47 46 an32s φcVdVaVFa=FcbVFb=FdaNbFb=FdcNd
48 41 47 bitr3d φcVdVaVFa=FcbVbFFdaNbFb=FdcNd
49 48 rexbidva φcVdVaVFa=FcbVbFFdaNbbVFb=FdcNd
50 r19.41v bVFb=FdcNdbVFb=FdcNd
51 49 50 bitrdi φcVdVaVFa=FcbVbFFdaNbbVFb=FdcNd
52 21 rexeqdv φcVdVbdomFbFFdaNbbVbFFdaNb
53 52 ad2antrr φcVdVaVFa=FcbdomFbFFdaNbbVbFFdaNb
54 simprr φcVdVdV
55 eqid Fd=Fd
56 fveqeq2 b=dFb=FdFd=Fd
57 56 rspcev dVFd=FdbVFb=Fd
58 54 55 57 sylancl φcVdVbVFb=Fd
59 58 biantrurd φcVdVcNdbVFb=FdcNd
60 59 ad2antrr φcVdVaVFa=FccNdbVFb=FdcNd
61 51 53 60 3bitr4d φcVdVaVFa=FcbdomFbFFdaNbcNd
62 37 61 bitrid φcVdVaVFa=FcaFNFdcNd
63 62 pm5.32da φcVdVaVFa=FcaFNFdFa=FccNd
64 25 63 bitr3d φcVdVaVaFFcaFNFdFa=FccNd
65 64 rexbidva φcVdVaVaFFcaFNFdaVFa=FccNd
66 22 65 bitrd φcVdVadomFaFFcaFNFdaVFa=FccNd
67 fvex FcV
68 67 34 brcnv FcF-1aaFFc
69 68 anbi1i FcF-1aaFNFdaFFcaFNFd
70 34 67 breldm aFFcadomF
71 70 adantr aFFcaFNFdadomF
72 71 pm4.71ri aFFcaFNFdadomFaFFcaFNFd
73 69 72 bitri FcF-1aaFNFdadomFaFFcaFNFd
74 73 exbii aFcF-1aaFNFdaadomFaFFcaFNFd
75 67 28 brco FcFNF-1FdaFcF-1aaFNFd
76 df-rex adomFaFFcaFNFdaadomFaFFcaFNFd
77 74 75 76 3bitr4ri adomFaFFcaFNFdFcFNF-1Fd
78 r19.41v aVFa=FccNdaVFa=FccNd
79 66 77 78 3bitr3g φcVdVFcFNF-1FdaVFa=FccNd
80 1 2 3 4 6 5 imasle φ˙=FNF-1
81 80 adantr φcVdV˙=FNF-1
82 81 breqd φcVdVFc˙FdFcFNF-1Fd
83 simprl φcVdVcV
84 eqid Fc=Fc
85 fveqeq2 a=cFa=FcFc=Fc
86 85 rspcev cVFc=FcaVFa=Fc
87 83 84 86 sylancl φcVdVaVFa=Fc
88 87 biantrurd φcVdVcNdaVFa=FccNd
89 79 82 88 3bitr4d φcVdVFc˙FdcNd
90 89 expcom cVdVφFc˙FdcNd
91 12 17 90 vtocl2ga XVYVφFX˙FYXNY
92 91 com12 φXVYVFX˙FYXNY
93 92 3impib φXVYVFX˙FYXNY