Metamath Proof Explorer


Theorem imasleval

Description: The value of the image structure's ordering when the order is compatible with the mapping function. (Contributed by Mario Carneiro, 24-Feb-2015)

Ref Expression
Hypotheses imasless.u φ U = F 𝑠 R
imasless.v φ V = Base R
imasless.f φ F : V onto B
imasless.r φ R Z
imasless.l ˙ = U
imasleval.n N = R
imasleval.e φ a V b V c V d V F a = F c F b = F d a N b c N d
Assertion imasleval φ X V Y V F X ˙ F Y X N Y

Proof

Step Hyp Ref Expression
1 imasless.u φ U = F 𝑠 R
2 imasless.v φ V = Base R
3 imasless.f φ F : V onto B
4 imasless.r φ R Z
5 imasless.l ˙ = U
6 imasleval.n N = R
7 imasleval.e φ a V b V c V d V F a = F c F b = F d a N b c N d
8 fveq2 c = X F c = F X
9 8 breq1d c = X F c ˙ F d F X ˙ F d
10 breq1 c = X c N d X N d
11 9 10 bibi12d c = X F c ˙ F d c N d F X ˙ F d X N d
12 11 imbi2d c = X φ F c ˙ F d c N d φ F X ˙ F d X N d
13 fveq2 d = Y F d = F Y
14 13 breq2d d = Y F X ˙ F d F X ˙ F Y
15 breq2 d = Y X N d X N Y
16 14 15 bibi12d d = Y F X ˙ F d X N d F X ˙ F Y X N Y
17 16 imbi2d d = Y φ F X ˙ F d X N d φ F X ˙ F Y X N Y
18 fofn F : V onto B F Fn V
19 3 18 syl φ F Fn V
20 19 adantr φ c V d V F Fn V
21 20 fndmd φ c V d V dom F = V
22 21 rexeqdv φ c V d V a dom F a F F c a F N F d a V a F F c a F N F d
23 fnbrfvb F Fn V a V F a = F c a F F c
24 20 23 sylan φ c V d V a V F a = F c a F F c
25 24 anbi1d φ c V d V a V F a = F c a F N F d a F F c a F N F d
26 ancom a N b b F F d b F F d a N b
27 vex b V
28 fvex F d V
29 27 28 breldm b F F d b dom F
30 29 adantr b F F d a N b b dom F
31 30 pm4.71ri b F F d a N b b dom F b F F d a N b
32 26 31 bitri a N b b F F d b dom F b F F d a N b
33 32 exbii b a N b b F F d b b dom F b F F d a N b
34 vex a V
35 34 28 brco a F N F d b a N b b F F d
36 df-rex b dom F b F F d a N b b b dom F b F F d a N b
37 33 35 36 3bitr4i a F N F d b dom F b F F d a N b
38 20 ad2antrr φ c V d V a V F a = F c F Fn V
39 fnbrfvb F Fn V b V F b = F d b F F d
40 38 39 sylan φ c V d V a V F a = F c b V F b = F d b F F d
41 40 anbi1d φ c V d V a V F a = F c b V F b = F d a N b b F F d a N b
42 7 3expa φ a V b V c V d V F a = F c F b = F d a N b c N d
43 42 an32s φ c V d V a V b V F a = F c F b = F d a N b c N d
44 43 anassrs φ c V d V a V b V F a = F c F b = F d a N b c N d
45 44 impl φ c V d V a V b V F a = F c F b = F d a N b c N d
46 45 pm5.32da φ c V d V a V b V F a = F c F b = F d a N b F b = F d c N d
47 46 an32s φ c V d V a V F a = F c b V F b = F d a N b F b = F d c N d
48 41 47 bitr3d φ c V d V a V F a = F c b V b F F d a N b F b = F d c N d
49 48 rexbidva φ c V d V a V F a = F c b V b F F d a N b b V F b = F d c N d
50 r19.41v b V F b = F d c N d b V F b = F d c N d
51 49 50 bitrdi φ c V d V a V F a = F c b V b F F d a N b b V F b = F d c N d
52 21 rexeqdv φ c V d V b dom F b F F d a N b b V b F F d a N b
53 52 ad2antrr φ c V d V a V F a = F c b dom F b F F d a N b b V b F F d a N b
54 simprr φ c V d V d V
55 eqid F d = F d
56 fveqeq2 b = d F b = F d F d = F d
57 56 rspcev d V F d = F d b V F b = F d
58 54 55 57 sylancl φ c V d V b V F b = F d
59 58 biantrurd φ c V d V c N d b V F b = F d c N d
60 59 ad2antrr φ c V d V a V F a = F c c N d b V F b = F d c N d
61 51 53 60 3bitr4d φ c V d V a V F a = F c b dom F b F F d a N b c N d
62 37 61 syl5bb φ c V d V a V F a = F c a F N F d c N d
63 62 pm5.32da φ c V d V a V F a = F c a F N F d F a = F c c N d
64 25 63 bitr3d φ c V d V a V a F F c a F N F d F a = F c c N d
65 64 rexbidva φ c V d V a V a F F c a F N F d a V F a = F c c N d
66 22 65 bitrd φ c V d V a dom F a F F c a F N F d a V F a = F c c N d
67 fvex F c V
68 67 34 brcnv F c F -1 a a F F c
69 68 anbi1i F c F -1 a a F N F d a F F c a F N F d
70 34 67 breldm a F F c a dom F
71 70 adantr a F F c a F N F d a dom F
72 71 pm4.71ri a F F c a F N F d a dom F a F F c a F N F d
73 69 72 bitri F c F -1 a a F N F d a dom F a F F c a F N F d
74 73 exbii a F c F -1 a a F N F d a a dom F a F F c a F N F d
75 67 28 brco F c F N F -1 F d a F c F -1 a a F N F d
76 df-rex a dom F a F F c a F N F d a a dom F a F F c a F N F d
77 74 75 76 3bitr4ri a dom F a F F c a F N F d F c F N F -1 F d
78 r19.41v a V F a = F c c N d a V F a = F c c N d
79 66 77 78 3bitr3g φ c V d V F c F N F -1 F d a V F a = F c c N d
80 1 2 3 4 6 5 imasle φ ˙ = F N F -1
81 80 adantr φ c V d V ˙ = F N F -1
82 81 breqd φ c V d V F c ˙ F d F c F N F -1 F d
83 simprl φ c V d V c V
84 eqid F c = F c
85 fveqeq2 a = c F a = F c F c = F c
86 85 rspcev c V F c = F c a V F a = F c
87 83 84 86 sylancl φ c V d V a V F a = F c
88 87 biantrurd φ c V d V c N d a V F a = F c c N d
89 79 82 88 3bitr4d φ c V d V F c ˙ F d c N d
90 89 expcom c V d V φ F c ˙ F d c N d
91 12 17 90 vtocl2ga X V Y V φ F X ˙ F Y X N Y
92 91 com12 φ X V Y V F X ˙ F Y X N Y
93 92 3impib φ X V Y V F X ˙ F Y X N Y